Cho hai số phức z1, z2 khác 0 thỏa mãn z 1 z 2 là số thuần ảo và z 1 - z 2 = 10 . Giá trị lớn của z 1 + z 2 bằng
Cho hai số phức z 1 , z 2 khác 0 thỏa mãn z 1 z 2 là số thuần ảo và z 1 − z 2 = 10 . Giá trị lớn của z 1 + z 2 bằng
A. 10
B. 10 2
C. 10 3
D. 20
Biết rằng hai số phức z 1 ; z 2 thỏa mãn z 1 - 3 - 4 i = 1 và z 2 - 3 - 4 i = 1 2 Số phức z có phần thực là a và phần ảo là b thỏa mãn 3a – 2b – 12 = 0. Giá trị nhỏ nhất của P = z - z 1 + z - 2 z 2 + 2 bằng
A. P m i n = 9945 11
B. P m i n = 5 - 2 3
C. P m i n = 9945 13
D. P m i n = 5 + 2 5
Biết rằng hai số phức z 1 , z 2 thỏa mãn z 1 − 3 − 4 i = 1 và z 2 − 3 − 4 i = 1 2 . Số phức z có phần thực là a và phần ảo là b thỏa mãn 3 a − 2 b − 12 = 0 . Giá trị nhỏ nhất của P = z − z 1 + z − 2 z 2 + 2 bằng:
A. P min = 9945 11 .
B. P min = 5 − 2 3 .
C. P min = 9945 13 .
D. P min = 5 + 2 5 .
Trong tập các số phức, gọi z 1 , z 2 là hai nghiệm của phương trình z 2 - z + 2017 4 = 0 với z 2 có thành phần ảo dương. Cho số phức z thỏa mãn z - z 1 = 1 . Giá trị nhỏ nhất của P = z - z 2 là
A. 2016 - 1
B. 2017 - 1 2
C. 2016 - 1 2
D. 2017 - 1
Đáp án A
Phương pháp.
Giả sử Giả phương trình ban đầu để tìm được nghiệm z 1 , z 2 Sử dụng giả thiết để đánh giá cho cho b. Đưa về một hàm cho b và sử dụng ước lượng cho b ở phần trước để tìm giá trị nhỏ nhất của P.
Lời giải chi tiết.
Tính toán ta tìm được hai nghiệm
Giả sử . Từ ta suy ra
Áp dụng (1) ta nhận được
Do đó giá trị nhỏ nhất của là 2016 - 1
Đạt được khi và chỉ khi
Trong tập các số phức, gọi z 1 , z 2 là hai nghiệm của phương trình z 2 - z + 2017 4 = 0 với z 2 có thành phần ảo dương. Cho số phức z thỏa mãn z - z 1 = 1 Giá trị nhỏ nhất của P = z - z 2 là
Trong tập các số phức gọi z 1 , z 2 là hai nghiệm của phương trình z 2 − z + 2017 4 = 0 với z 2 có phần ảo dương. Cho số phức z thỏa mãn z − z 1 = 1. Giá trị nhỏ nhất của P = z − z 2 là
A. 2016 − 1
B. 2017 − 1
C. 2017 − 1 2
D. 2016 − 1 2
Đáp án A
Phương trình z 2 − z + 2017 2 = 0 ⇔ 4 z 2 − 4 z + 2017 = 0
⇔ 2 z − 1 2 = 2016 i 2 ⇔ z 1 = 1 − i 2016 2 z 2 = 1 + i 2016 2
Ta có z − z 1 + z − z 2 ≥ z − z 1 − z − z 2 = z − z 2 ≥ z 1 − z 2 − z − z 1 = 2016 − 1
Vật giá trị nhỏ nhất của biểu thức P là P min = 2016 − 1
Trong tập các số phức, gọi z 1 , z 2 là hai nghiệm của phương trình z 2 - z + 2017 4 = 0 với z 2 có thành phần ảo dương. Cho số phức z thỏa mãn | z - z 1 |=1 Giá trị nhỏ nhất của P=| z - z 2 |là
A. 2016 - 1
B. 2017 - 1 2
C. 2016 - 1 2
D. 2017 - 1
Biết rằng hai số phức z 1 , z 2 thỏa mãn z 1 - 3 - 4 i = 1 và z 2 - 3 - 4 i = 1 2 . Số phức z có phần thực là a và phần ảo là b thỏa mãn 3 a - 2 b = 12 . Giá trị nhỏ nhất của biểu thức P = z - z 1 + z - z 2 + 2 bằng
A. P m i n = 3 1105 11
B. P m i n = 5 - 2 3
C. P m i n = 3 1105 13
D. P m i n = 5 + 2 5
Chọn đáp án C
Gọi M 1 , M 2 , M lần lượt là điểm biểu diễn của các số phức z 1 , 2 z 2 , z trên mặt phẳng tọa độ Oxy.
Do z 1 - 3 - 4 i = 1 nên quỹ tích điểm M 1 là đường tròn C 1 có tâm I 1 3 ; 4 và bán kính R = 1
Do z 2 - 3 - 4 i = 1 2 ⇔ 2 z 2 - 6 - 8 i = 1 nên quỹ tích điểm M 2 là đường tròn C 2 có tâm I 2 6 ; 8 và bán kính R = 2
Ta có điểm M(a; b) thỏa mãn 3a - 2b = 12 nên quỹ tích điểm M là đường thẳng d: 3x - 2y - 12 = 0
Khi đó
Gọi C 3 là đường tròn đối xứng với đường tròn C 2 qua đường thẳng d.
Ta tìm được tâm của C 3 là I 3 138 13 ; 64 13 và bán kính R = 1
Khi đó
với M 3 ∈ C 3 và A, B lần lượt là giao điểm của đường thẳng I 1 I 3 với hai đường tròn C 1 , C 3 (quan sát hình vẽ).
Dấu "=" xảy ra khi và chỉ khi M 1 ≡ A và M 3 ≡ B
Vậy P m i n = A B + 2 = I 1 I 3 = 3 1105 13
Biết rằng hai số phức z 1 , z 2 thỏa mãn | z 1 - 3 - 4 i | = 1 và | z 2 - 3 - 4 i | = 1 2 . Số phức z có phần thực là a và phần ảo là b thỏa mãn 3 a - 2 b = 12 . Giá trị nhỏ nhất của P = | z - z 1 | + | z - 2 z 2 | + 2 bằng: