Cho các số phức z, w thỏa mãn z - 5 + 3 i = 3 , i w + 4 + 2 i = 2
Tìm giá trị lớn nhất của biểu thức T = 3 i z + 2 w
A. 554 + 5
B. 578 + 13
C. 578 + 5
D. 554 + 13
Cho số phức z thỏa mãn điều kiện z - 3 + 2 i = z - i Giả sử w là số phức có môđun nhỏ nhất trong các số phức z thỏa mãn điều kiện trên. Tính môđun của w
Cho số phức z thỏa mãn |z| = 5 và |z + 3| = |z + 3 - 10i| .Tính số phức w=z-4+3i
A. W=-4+8i
B. w=1=3i
C. w= -1+7i
D. w=-3+8i
Cho số phức z thỏa mãn: |z|= 4. Tập hợp các điểm trên mặt phẳng tọa độ biểu diễn số phức w thỏa mãn: w = (3+4i)z + i là một đường tròn có bán kính là:
A. 4.
B. 5.
C. 20.
D. 22.
Đáp án C
Đặt Số phức w được biểu diễn bởi điểm M (x;y).
Ta có:
=> |z| =
Vậy số phức w được biểu diễn bởi đường tròn tâm I (0;1), bán kính R = 20 và có phương trình:
Cho các số phức z thỏa mãn z = 7 . Tập hợp các điểm biểu diễn các số phức w = ( 3 + 4 i ) z ¯ + i + 5 là một đường tròn có bán kính bằng
A. 19
B. 20
C. 35
D. 4
Cho số phức z thỏa mãn |z| = 5 và số phức w = ( 1 + i ) z Tìm |w|
A. 10
B. 2 + 5
C. 5
D. 2 5
Đáp án A
Phương pháp: Cho z1, z2 là hai số phức bất kì, khi đó | z1.z2 | = |z1|.|z2|
Cách giải: Ta có:
Cho số phức z thỏa mãn z - 1 = 5 . Biết tập hợp các điểm biểu diễn số phức w xác định bởi w = ( 2 + 3 i ) . z ¯ + 3 + 4 i là một đường tròn bán kính R. Tính R
A. R= 5 17
B. R= 5 10
C. R= 5 5
D. R= 5 13
Đáp án D
Ta có:
Dễ thấy tập hợp điểm biểu diễn số phức w là đường tròn tâm (5;7) bán kính 5 13
Cho các số phức z thỏa mãn z = 7 . Tập hợp các điểm biểu diễn các số phức w = 3 + 4 i z ¯ + i + 5 là một đường tròn có bán kính bằng.
A. 19
B. 20
C. 35
D. 4
Đáp án C
w = 3 + 4 i z ¯ + i + 5 ⇒ w − 5 − i = 3 + 4 i z ¯ = 35 R = 35
Cho số phức z thỏa mãn: z = 4 . Tập hợp các điểm trên mặt phẳng tọa độ biểu diễn số phức w thỏa mãn: w = 3 + 4 i z + i là một đường tròn có bán kính là:
A. 4
B. 5
C. 20
D. 22
Đáp án C
Đặt w = x + yi , x ; y ∈ ℝ . Số phức w được biểu diễn bởi điểm M(x;y).
Ta có:
w = 3 + 4 i z + i = x + yi
⇔ z = x + y − 1 i 3 + 4 i = x + y − 1 i 3 − 4 i 25 = 3 x + 4 y − 4 + − 4 x + 3 y − 3 i 25
⇒ z = 1 25 3 x + 4 y − 4 2 + − 4 x + 3 y − 3 2 = 4
⇔ 3 x + 4 y − 4 2 + − 4 x + 3 y − 3 2 = 100 2
⇔ 3 x + 4 y 2 + − 4 x + 3 y 2 − 8 3 x + 4 y + 16 − 6 − 4 x + 3 y + 9 = 10000
Vậy số phức w được biểu diễn bởi đường tròn tâm I(0;1), bán kính R = 20 và có phương trình: x 2 + y − 1 2 = 400 .
Cho các số phức z, w khác 0 và thỏa mãn |z-w| = 2|z| = |w|. Phẩn thực của số phức u = z w là:
A. a = 1 4
B. a = 1
C. a = 1 8
D. a = - 1 8
Cho các số phức z, w khác 0 và thỏa mãn |z-w| = 2|z| = |w| Phẩn thực của số phức u = z w là: