Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
PIKACHU
Xem chi tiết
SKT_ Lạnh _ Lùng
5 tháng 4 2016 lúc 15:02

817-279-913

=(34)7-(33)9-(32)13

=328-327-326

=326(32-31-30)

=324.9.5

=324.45 chia hết cho 45

Vậy 817-279-913 chia hết cho 45

ti ro
13 tháng 6 2017 lúc 17:31

giai thich giup minh : \(^{3^{26}}\) x (\(3^2\) -\(3^1\)-\(3^0\))

Ho Minh Hoang
Xem chi tiết
okawak
6 tháng 11 2016 lúc 20:02

15000000000

Nguyen Van Thanh
8 tháng 11 2016 lúc 11:18

A= 328-327-326= 326(32-3-1)=326.5 chia hết cho 5, mà  A chia hết cho 9 nên A chia hết cho 45

Huynh To Ngoc Thuy
Xem chi tiết
Bùi Trọng Diền
Xem chi tiết
mi tam
Xem chi tiết
Triệu Mẫn
Xem chi tiết
Bạch Hà Băng
Xem chi tiết
An Nguyễn Bá
27 tháng 10 2017 lúc 21:38

Chứng minh rằng:

\(2^{10}+2^{11}+2^{12}\)

\(=2^{10}\left(1+2+2^2\right)\)

\(=2^{10}.7\) \(⋮\) 7

Vậy \(2^{10}+2^{11}+2^{12}\) chia hết cho 7

An Nguyễn Bá
27 tháng 10 2017 lúc 21:51

Chứng minh rằng:

\(3^{n+3}+3^{n+2}+2^{n+3}+2^{n+2}\)

\(=3^n.3^3+3^n.3^2+2^n.2^3+2^n.2^2\)

\(=3^n\left(3^3+3^2\right)+2^n\left(2^3+2^2\right)\)

\(=36.3^n+12.3^n\)

\(=6\left(6.3^n+2.3^n\right)\) \(⋮\) 6 với mọi n \(\in\) N

Vậy \(3^{n+3}+3^{n+2}+2^{n+3}+2^{n+2}\) chia hết cho 6 với mọi n \(\in\) N

An Nguyễn Bá
27 tháng 10 2017 lúc 22:00

Chứng minh rằng:

\(81^7-27^9-9^{13}\)

\(=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}\)

\(=3^{28}-3^{27}-3^{26}\)

\(=3^{24}\left(3^4-3^3-3^2\right)\)

\(=3^{24}.45\) \(⋮\) 45

Vậy \(81^7-27^9-9^{13}\) chia hết cho 45

Trần Việt Hoàng
Xem chi tiết
Học24
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 8 2021 lúc 20:49

\(81^7-27^9-9^{13}\)

\(=3^{28}-3^{27}-3^{26}\)

\(=3^{26}\left(3^2-3-1\right)\)

\(=3^{24}\cdot9\cdot5⋮45\)

Nguyễn Minh Hoàng
6 tháng 8 2021 lúc 20:14

\(\Rightarrow3^{28}-3^{27}-3^{26}=3^{26}.\left(3^2-3-1\right)=3^{26}.5=3^{24}.9.5=3^{24}.45⋮45\)