chung minh 81^7-27^9-9^13 chia het 45
chung minh rang 81^7-27^9-9^13 chia het cho 45
817-279-913
=(34)7-(33)9-(32)13
=328-327-326
=326(32-31-30)
=324.9.5
=324.45 chia hết cho 45
Vậy 817-279-913 chia hết cho 45
giai thich giup minh : \(^{3^{26}}\) x (\(3^2\) -\(3^1\)-\(3^0\))
chung minh
817 - 279 - 913 chia het cho 45
A= 328-327-326= 326(32-3-1)=326.5 chia hết cho 5, mà A chia hết cho 9 nên A chia hết cho 45
chung minh rang :
a.\(7^6+7^5+7^4\) chia het cho 11
b.\(81^7-27^9-9^{13}\) chia het cho 45
Chứng minh 817-279-913 chia het cho 45
cmr:
81^7-27^9-9^13 chia het cho 45
81 mu 7 - 27 mu 9 - 9 mu 13 chia het cho 45
chung minh rang :
3636- 910 se chia het cho 45
2 10 + 211 +212 se chia het cho 7
817- 279- 913 se chia het cho 45
3n+3+ 3 n+2 +2n+3 +2n+2 se chia het cho 6 moi n thuoc N
minh se tick cho nhung ai nhanh nhat va dung nhat nhe
Chứng minh rằng:
\(2^{10}+2^{11}+2^{12}\)
\(=2^{10}\left(1+2+2^2\right)\)
\(=2^{10}.7\) \(⋮\) 7
Vậy \(2^{10}+2^{11}+2^{12}\) chia hết cho 7
Chứng minh rằng:
\(3^{n+3}+3^{n+2}+2^{n+3}+2^{n+2}\)
\(=3^n.3^3+3^n.3^2+2^n.2^3+2^n.2^2\)
\(=3^n\left(3^3+3^2\right)+2^n\left(2^3+2^2\right)\)
\(=36.3^n+12.3^n\)
\(=6\left(6.3^n+2.3^n\right)\) \(⋮\) 6 với mọi n \(\in\) N
Vậy \(3^{n+3}+3^{n+2}+2^{n+3}+2^{n+2}\) chia hết cho 6 với mọi n \(\in\) N
Chứng minh rằng:
\(81^7-27^9-9^{13}\)
\(=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}\)
\(=3^{28}-3^{27}-3^{26}\)
\(=3^{24}\left(3^4-3^3-3^2\right)\)
\(=3^{24}.45\) \(⋮\) 45
Vậy \(81^7-27^9-9^{13}\) chia hết cho 45
1.CMR
a) 36^36-9^10 chia het cho 45
b)7^6+7^5-7^4 chia het cho 11
c)81^7-27^9-9^13 chua het cho 45
2.
S=3+3^2+3^3+...+3^199
CMR:S Chia hết cho 12
Chứng minh : 81^ 7 – 27^ 9 – 9^ 13 chia hết cho 45
\(81^7-27^9-9^{13}\)
\(=3^{28}-3^{27}-3^{26}\)
\(=3^{26}\left(3^2-3-1\right)\)
\(=3^{24}\cdot9\cdot5⋮45\)
\(\Rightarrow3^{28}-3^{27}-3^{26}=3^{26}.\left(3^2-3-1\right)=3^{26}.5=3^{24}.9.5=3^{24}.45⋮45\)