Cho x, y >0 thỏa mãn log(x+2y)=logx+logy. Khi đó giá trị nhỏ nhất của biểu thức P = x 2 1 + 2 y + 4 y 2 1 + x là
A. 6.
B. 32/5
C. 31/5
D. 29/5
Cho x , y > 0 thỏa mãn log x + 2 y = log x + log y . Khi đó, giá trị nhỏ nhất của biểu thức P = x 2 1 + 2 y + 4 y 2 1 + x là:
A. 6
B. 32 5
C. 31 5
D. 29 5
Đáp án B
Ta có:
log x + 2 y = log x + log y ⇔ log 2 x + 2 y = log 2 x y ⇔ 2 x + 2 y = 2 x y * .
Đặt a = x > 0 b = 2 y > 0 , khi đó * ⇔ 2 a + b = a b và P = a 2 1 + b + b 2 1 + a ≥ a + b 2 a + b + 2 .
Lại có a b ≤ a + b 2 4 ⇒ 2 a + b ≤ a + b 2 4 ⇔ a + b ≥ 8.
Đặt t = a + b , do đó P ≥ f t = t 2 t + 2
Xét hàm số f t = t 2 t + 2 trên 8 ; + ∞ , có f ' t = t 2 + 2 t t + 2 2 > 0 ; ∀ t ≥ 8
Suy ra f t là hàm số đồng biến trên 8 ; + ∞ → min 8 ; + ∞ f t = f 8 = 32 5 .
Vậy gía trị nhỏ nhất của biểu thức P là 32 5 .
Cho x, y > 0 thỏa mãn log x + 2 y = log x + log y . Khi đó, giá trị nhỏ nhất của biểu thức P = x 2 1 + 2 y + 4 y 2 1 + x
A. 6
B. 31 5
C. 32 5
D. 39 5
Cho các số thực dương x, y thỏa mãn log(x+2y) = logx + logy. Tìm giá trị nhỏ nhất của biểu P = e x 2 1 + 2 y 4 . e y 2 1 + 2 x
Cho x, y > 0 thỏa mãn log(x + 2y) = log x + log y. Khi đó, giá trị nhỏ nhất của biểu thức
P = x 2 1 + 2 y + 4 y 2 1 + x là:
A. 6
B. 32 5
C. 31 5
D. 29 5
Đáp án B
Ta có log(x + 2y) = log x + log y
<=> log 2 (x+2y) = log 2xy
<=> 2 (x+2y) = 2xy (*).
Đ ặ t a = x > 0 b = 2 y > 0 , khi đó
* ⇔ 2 a + b = a b
và P = a 2 1 + b + b 2 1 + a ≥ a + b 2 a + b + 2
Lại có a b ≤ a + b 2 4 ⇒ 2 a + b ≤ a + b 2 4 ⇔ a + b ≥ 8 .
Đặt t = a + b, do đó
P ≥ f t = t 2 t + 2 .
X é t h à m s ố f t = t 2 t + 2 t r ê n [ 8 ; + ∞ )
c ó f ' t = t 2 + 2 t t + 2 2 > 0 ; ∀ ≥ 8
Suy ra f(t) là hàm số đồng biến trên [ 8 ; + ∞ )
Vậy gía trị nhỏ nhất của biểu thức P là 32 5 .
Cho hai số thực dương x, y thỏa mãn log x + log y ≥ log ( x 3 + 2 y ) Giá trị nhỏ nhất của P = 25x + y là
A. 375/4
B. 45/2
C. 195/2
D. 14 26
Cho hai số thực x,y thỏa mãn 0 ≤ x ≤ 1 2 , 0 ≤ y ≤ 1 2 , và log ( 11 - 2 x - y ) = 2 y + 4 x - 1 . Xét biểu thức P = 16 y x 2 - 2 x ( 3 y + 2 ) - y + 5 . Gọi m, M lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của P. Khi đó giá trị của T = ( 4 m + M ) bằng bao nhiêu?
A. 16
B. 18
C. 17
D. 19
Cho hai số thực x , y thỏa mãn 0 ≤ x ≤ 1 2 , 0 < y ≤ 1 và log ( 11 - 2 x - y ) = 2 x + 4 y - 1 Xét biểu thức P = 16 x 2 y - 2 x ( 3 y + 2 ) - y + 5 . Gọi m , M lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của P. Khi đó giá trị của biểu thức T = 4 m + M bằng bao nhiêu?
A. 16
B. 18
C. 17
D. 19
Cho x , y > 0 thỏa mãn log x + 3 y x y = x y - x - 3 y . Tìm giá trị nhỏ nhất của biểu thức P = x 2 1 + 3 y + 9 y 2 1 + x
A. 10
B. 71 7
C. 72 7
D. 73 7
Cho hai số thực x, y thỏa mãn 0 ≤ x ≤ 1 2 , 0 < y ≤ 1 và log 11 − 2 x − y = 2 y + 4 x − 1. Xét biểu thức P = 16 x 2 y − 2 x 3 y + 2 − y + 5. Gọi m, M lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của P. Khi đó giá trị của biểu thức T = 4m + M bằng bao nhiêu?
A. 16
B. 18
C. 17
D. 19
Đáp án C
Suy ra f(t) đồng biến trên TXĐ và pt f(t) = 21 chỉ có 1 nghiệm duy nhất
Ta thấy t = 10 là 1 nghiệm của pt nên t = 10 là nghiệm duy nhất của pt
⇒ 11 − 2 x − y = 10 ⇒ y = 1 − 2 x ⇒ P = 16 x 2 ( 1 − 2 x ) − 2 x ( 3 − 6 x + 2 ) − 1 + 2 x + 5 = − 32 x 3 + 28 x 2 − 8 x + 4 P ' = − 96 x 2 + 56 x − 8 P ' = 0 ⇔ x = 1 4 x = 1 3 P ( 0 ) = 4 , P ( 1 3 ) = 88 27 , P ( 1 4 ) = 13 4 , P ( 1 2 ) = 3 ⇒ m = 13 4 , M = 4 ⇒ M + 4 m = 17