Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 6 2017 lúc 14:47

Đáp án B

Ta có:

log x + 2 y = log x + log y ⇔ log 2 x + 2 y = log 2 x y ⇔ 2 x + 2 y = 2 x y      * .

Đặt a = x > 0 b = 2 y > 0 , khi đó * ⇔ 2 a + b = a b và  P = a 2 1 + b + b 2 1 + a ≥ a + b 2 a + b + 2 .

Lại có a b ≤ a + b 2 4 ⇒ 2 a + b ≤ a + b 2 4 ⇔ a + b ≥ 8.

Đặt t = a + b , do đó  P ≥ f t = t 2 t + 2

Xét hàm số f t = t 2 t + 2 trên 8 ; + ∞ , có  f ' t = t 2 + 2 t t + 2 2 > 0 ; ∀ t ≥ 8

Suy ra f t là hàm số đồng biến trên  8 ; + ∞ → min 8 ; + ∞ f t = f 8 = 32 5 .

Vậy gía trị nhỏ nhất của biểu thức P là  32 5 .

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 9 2018 lúc 2:10

Đáp án C

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 1 2019 lúc 8:25

Đáp án C

Ta có

Lại có

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
27 tháng 8 2018 lúc 17:04

Đáp án B

Ta có log(x + 2y) = log x + log y

<=> log 2 (x+2y) = log 2xy

<=> 2 (x+2y) = 2xy (*).

Đ ặ t   a = x > 0 b = 2 y > 0 , khi đó

* ⇔ 2 a + b = a b

và  P = a 2 1 + b + b 2 1 + a ≥ a + b 2 a + b + 2

Lại có  a b ≤ a + b 2 4 ⇒ 2 a + b ≤ a + b 2 4 ⇔ a + b ≥ 8 .

Đặt t = a + b, do đó

P ≥ f t = t 2 t + 2 .

X é t   h à m   s ố   f t = t 2 t + 2 t r ê n   [ 8 ; + ∞ )

c ó   f ' t = t 2 + 2 t t + 2 2 > 0 ; ∀ ≥ 8

Suy ra f(t) là hàm số đồng biến trên  [ 8 ; + ∞ )

Vậy gía trị nhỏ nhất của biểu thức P là  32 5 .

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 11 2019 lúc 13:08


Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 7 2019 lúc 14:16

Đáp án đúng : A

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 5 2019 lúc 17:30

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
29 tháng 11 2017 lúc 8:56

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 4 2017 lúc 7:13

Đáp án C

Suy ra f(t) đồng biến trên TXĐ và pt f(t) = 21 chỉ có 1 nghiệm duy nhất

Ta thấy t = 10 là 1 nghiệm của pt nên t = 10 là nghiệm duy nhất của pt

⇒ 11 − 2 x − y = 10 ⇒ y = 1 − 2 x ⇒ P = 16 x 2 ( 1 − 2 x ) − 2 x ( 3 − 6 x + 2 ) − 1 + 2 x + 5 = − 32 x 3 + 28 x 2 − 8 x + 4 P ' = − 96 x 2 + 56 x − 8 P ' = 0 ⇔ x = 1 4 x = 1 3 P ( 0 ) = 4 , P ( 1 3 ) = 88 27 , P ( 1 4 ) = 13 4 , P ( 1 2 ) = 3 ⇒ m = 13 4 , M = 4 ⇒ M + 4 m = 17