Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ender MC
Xem chi tiết
Tử-Thần /
28 tháng 11 2021 lúc 20:28

hình đâu

đặng_khánh_ngân
Xem chi tiết
Phạm Thu Hà
20 tháng 8 lúc 20:46

cho mình hình vẽ

 

Gia Bảo
Xem chi tiết
Nguyễn Bình Minh
Xem chi tiết
Trịnh Thị Như Quỳnh
14 tháng 9 2016 lúc 19:47

 Hình nè bạn hihi ^...^ leuleu

y H d* x A d B 60*

Gà
Xem chi tiết
Nguyễn Hoàng An Nhiên
Xem chi tiết
Chau Anh
6 tháng 10 lúc 10:37

*Kẻ Bylà tia đối ca tia By => ABy kề bù với ABy
=> ABy + ABy= 180
=> 120 + ABy
= 180

=> ABy= 60
Ta có mAx = 60 =ABy
, mà mAx và ABy’ ở vtrí đồng v=> Ax // By (1)

*Ta có yBC + CBA + ABy = 360
=> yBC + 90 + 120 = 360
=> yBC = 150
Ta có BCz = 150 = yBC, mà 2 góc này
ở vtrí so le trong => By // Cz (2)

Từ (1), (2) => đpcm

Huyenanh
Xem chi tiết
Phạm Lê Ái Vy
Xem chi tiết
Nguyễn Đức Lộc
5 tháng 11 2014 lúc 0:40

cho hình tam giác ABCD ư viết lại đề bài đi bạn

 

Nguyễn Đức Lộc
5 tháng 11 2014 lúc 1:00

câu 2

tam giác ABM bằng tam giác DBN (c.g.c) nên BM=BN và ABM=DBN ta có ABM+MBD=60 nên DBN+MBD=60 hay MBN =60 tam giác MBN đều

 

Long quyền tiểu tử
Xem chi tiết
Aug.21
21 tháng 6 2019 lúc 8:17

a) Phân tích bài toán

Giả sử PQ và PR là hai đường xiên kẻ từ P đến d sao cho PQ = PR và\(\widehat{QPR}=60^0\). Gọi H là chân đường vuông góc kẻ từ P đến d. Khi đó ∆PHQ = ∆PHR (cạnh huyền, cạnh góc vuông), suy ra \(\widehat{HPQ}=\widehat{HPR}=30^0\) Từ đó suy ra cách vẽ hai đường xiên PQ và PR.  

Kẻ\(PH\perp d\) (H ∈ d). Dùng thước đo góc để vẽ góc HPx bằng 30°. Tia Px cắt d tại điểm Q. Trên d lấy điểm R sao cho HR = HQ. Hai đường xiên PQ và PR lần lượt có hình chiếu trên d là HQ và HR. Do HQ = HR nên PQ = PR.

Hơn nữa\(\widehat{QPR}=2\widehat{HQP}=60^0\)

b) Hướng dẫn

- Tam giác PQR có PQ = PR và \(\widehat{QPR}=60^0\), tam giác PQR là tam giác đều

PQ = 18cm => QR =18cm ; HQ = HR =9cm.

๖ۣۜNɦσƙ ๖ۣۜTì
21 tháng 6 2019 lúc 8:27

Giả sử PQ và PR là hai đường xiên kẻ từ P đến d sao cho PQ = PR và ∠(QPR) = 60°.

Gọi H là chân đường vuông góc kẻ từ P đến d. Khi đó ΔPHQ = ΔPHQ (cạnh huyền, cạnh góc vuông),

suy ra ∠(HPQ) = ∠(HPR) = 30°. Từ đó suy ra cách vẽ hai đường xiên PQ và PR.

Kẻ PH ⊥ d (H ∈ d).

Dùng thước đo góc để vẽ góc HPx bằng 30°.

Tia Px cắt d tại điểm Q. Trên d lấy điểm R sao cho HR = HQ.

Hai đường xiên PQ và PR lần lượt có hình chiếu trên d là HQ và HR.

Do HQ = HR nên PQ = PR.

Hơn nữa ∠(QPR) = 2∠(HPQ) = 60°.

b) Hướng dẫn

- Tam giác PQR có PQ = PR và ∠(QPR) = 60°, tam giác đó là tam giác đều

- PQ = 18cm ⇒ QR =18 cm ; HQ = HR =9 cm

Huỳnh Quang Sang
21 tháng 6 2019 lúc 8:27

Hình vẽ :

d R H Q x P 30 0