Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Họ Và Tên
Xem chi tiết
Trương  Tiền  Phương
Xem chi tiết
Kiệt Nguyễn
13 tháng 7 2020 lúc 18:07

Giả sử hình vuông ABCD có tâm O và cạnh a, chứa năm hình tròn không cắt nhau và đều có bán kính bằng 1

Vì cả năm hình tròn này đều nằm trọn trong hình vuông nên các tâm của chúng nằm trong hình vuông \(A'B'C'D'\)có tâm O và cạnh \(a-2\), ở đây \(A'B'//AB\)

Các đường thẳng nối các trung điểm cùa các cạnh đối diện của hình vuông \(A'B'C'D'\)chia \(A'B'C'D'\)thành 4 hình vuông nhỏ

Theo nguyên lí Dirichlet tồn tại một trong 4 hình vuông nhỏ mà trong hình vuông này chứa ít nhất hai trong số 5 tâm hình tròn nói trên (không mất tính tổng quát ta giả sử là \(O'\)và \(O''\))

Để ý rằng vì không có hai hình tròn nào (trong số năm hình tròn) cắt nhau nên \(O'O''\ge2\)

Mặt khác do \(O'\)\(O''\)cùng nằm trong một hình vuông nhỏ (cạnh của hình vuông nhỏ đó bằng \(\frac{a-2}{2}\)) nên ta lại có \(O'O''\le\frac{a-2}{2}.\sqrt{2}\). Từ đó ta suy ra được\(\frac{a-2}{2}.\sqrt{2}\ge2\Rightarrow a\ge2\sqrt{2}+2\)

Vậy mọi hình vuông cạnh a thỏa mãn yêu cầu đề bài, ta đều có \(a\ge2\sqrt{2}+2\)

Bây giờ xét hình vuông \(ABCD\)có \(a=2\sqrt{2}+2\)

Xét năm hình tròn có tâm là \(O,A',B',C',D'\)thì mọi yêu cầu của đề bài thỏa mãn.

Tóm lại, hình vuông có kích thước bé nhất cần tìm là hình vuông với cạnh \(a=2\sqrt{2}+2\)

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 11 2019 lúc 8:34

Đáp án B

Phương pháp:

- Gắn hệ trục tọa độ Oxy, xác định phương trình hàm số bậc ba.

- Ứng dụng tích phân vào tính thể tích.

Cách giải:

Gắn hệ trục tọa độ Oxy như hình vẽ.

Gọi phương trình của đường sinh là: 

Theo đề bài, ta có: (C) có điểm cực đại (0;3), điểm cực tiểu là (2;1)

Từ (1),(2),(3) và (4)

Thể tích đã cho vào:

Thể tích 1 viên bi là 

Cần số viên bi:  (viên)

༄NguyễnTrungNghĩa༄༂
Xem chi tiết
Hoàng Đức Long
Xem chi tiết
Vũ Thành Nam
20 tháng 6 2017 lúc 17:46

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 6 2017 lúc 17:27

Đáp án B.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 7 2018 lúc 3:08

Khối trụ thu được có bán kính đáy bằng ON và chiều cao bằng MN.

Chọn A

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 11 2017 lúc 14:18

Đáp án B

Đặt SO' = x. Theo định lí Talet ta có: x h = r ' r 0 < x < h  

Thể tích khối trụ là V = πr ' 2 h - x = π xr 2 h 2 h - x = f x  

Ta có f x = πr 2 h 2 x 2 h - x

Cách 1. Xét  M x = x 2 h - x  

Cách 2. Ta có   M x = 4 . x 2 . x 2 . h - x ≤ 4 x 2 + x 2 + h - x 3 3 = 4 h 3 27

Dấu “=” xảy ra ⇔ x 2 = h - x ⇔ x = 2 3 h ⇒ M N = h - x = h 3 .

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 8 2018 lúc 17:47

a) Hình tròn có bán kính 2cm có diện tích : S = π. 2 2  = 4π ( c m 2 )

b) Hình vuông có độ dài cạnh 3,5cm có diện tích : S =  3 , 5 2  = 12,25 ( c m 2 )

c) tam giác có các cạnh 3cm,4cm,5cm nên nó là tam giác vuông

Khi đó tam giác có diện tích: S =(Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9).3.4 =6( c m 2 )

d) Nửa mặt cầu bán kính 4cm có diện tích : S= (Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9).4. π . 4 2  = 32 π  ( c m 2 )

Vậy trong các hình trên thì nửa mặt cầu bán kính 4cm có diện tích lớn nhất

Vậy chọn đáp án (D)