Cho M=(a+b)-(b-c-a)+(c-a). Với b,c thuộc số nguyên ,a thuộc số âm.CM rằng: M<0
Cho M=a-b+c+1, N=a+2 với a, b, c thuộc Z biết M=N. Chứng tỏ rằng: b và c là 2 số nguyên liền nhau.
Có M=N
=>a-b+c+1=a+2
=>-b+c+1=a+2-a
=>-b+c+1=2
=> c-b=1
Hai số nguyên liền nhau là 2 số có khoảng cách bằng 1
=> c,b là hai số nguyên liền nhau.
Học tốt =P
Cho M = (-a b) - (b c-a) + (c-a) trong đó b,c thuộc Z còn a là số nguyên âm . Chứng tỏ rằng M luôn nguyên dương
Đề có vẻ sai nhé bạn!!!
Thiếu dấu!!
hok tốt!!!
^^
Cho m=(-a+b)-(b+c-a)+(c-a),trong đó b,c thuộc tập Z ,a là số nguyên âm.Chứng minh rằng m luôn dương
Ta có:
-(a+b)-(b+c-a)+(c-a)
=-a-b-b-c+a+c-a ( phá ngoặc theo qui tắc dấu ngoặc đã học )
=[(-a+a)-c+c]-b-b-a ( đổi vị trí các số hạng)
=0-a-b-b
=-a-2b
Vì a là số âm nên -a là số dương và lớn hơn 0.
Còn tiếp chắc đề sai nên tớ thui zậy ♥
Gỉa sử x = a /m,y=b/m ( a,b,m thuộc tập hợp số nguyên,m >0) và x<y.Hãy chứng tỏ rằng nếu chọn tập hợp số nguyên
z = (a+b)/ 2m thì ta có x < z < y.
* Sử dụng tính chất: Nếu a,b,c thuộc tập hợp số nguyên và a < b thì a+c < b+c
Ta có:
x = \(\frac{a}{m}=\frac{a+a}{2m}\)
\(y=\frac{b}{m}=\frac{b+b}{2m}\)
Vì x<y, => a<b
Vì a< b => \(\frac{a+a}{2m}
cho M = ( -a + b ) - ( b + c - a ) + ( c - a) với b thuộc Z , a là số nguyên
Chứng minh M dương
Cho a,b,c,d thuộc N*
Chứng minh rằng M không là số nguyên
M=a/a+b+c + b/a+b+d + c/b+c+d + d/a+c+d
Cho a,b,c,d thuộc tập hợp N*
Chứng tỏ rằng"
M= [a/(a+b+c)] + [b/(a+b+d)] + [c/(b+c+d)] + [d/(a+c+d)] có giá trị không là số nguyên
a) Cho M = (-a+b) - (b+c-a) + (c-a) trong đó b,c thuộc Z còn a là số nguyên âm. Chứng tỏ M luôn là số nguyên dương
b) Cho A= a=b+c+1
B= a+2 với a,b,c thuộc Z
Tính A-B
Tính A-(-B)
Nếu A=B chứng tỏ c là số liền sau của b
GIÚP MK NHÉ
CMR; M=(-a+b) -(b+c-a) +(c-a)
trong đó b,c thuộc Z còn a là 1 số nguyên âm.chứng minh rằng biểu thức M luôn luôn dương.
GIẢI GIÚP MÌNH VỚI NHÉ!!!!!!!^^^