CMR: Nếu 3x + 5y chia hết cho 7 thi x + 4y chia hết cho 7 và ngược lại (x;y thuộc N)
Cho 3x +5y chia hết cho 7. CMR x+4y chia hết cho 7 (x,y thuộc N) đếm ngược lại có đúng khôg?
nếu 3x + 5y chia hết cho bảy thì x,y thuộc ny
3x +5y chia hết cho 7
3x + 5y + 7y chia hết cho 7
3x + 12y chia hết cho 7
3(x + 4y) chia hết cho 7
(3 , 7) = 1
Vậy x + 4y chia hết cho 7
chứng minh rằng
nếu 3x+5y chia hết cho 7 thì x+4y chia hết cho 7 và ngược lại
ta có : 3x+5y chia hết cho 7
x+4y chia hết cho 7 suy ra 3x+12y chia hết cho 7
(3x+12y) - (3x+5y) = 7 chia hết cho 7
Vậy nếu 3x+5y chia hết cho 7 thì x+4y chia hết cho 7 và ngược lại
A=3x+5y
B=x+4y
ta có 3B-A = 3x+12y - 3x -5y = 7y chia hết cho 7
Nếu A chia hết cho 7 thì 3B cũng chia hết cho 7 => B chia hết cho 7
Nếu B chia hết cho 7 => 3B chia hết cho 7 => A chia hết cho 7
( Theo t/c chia hết của 1 tổng)
a) Chứng minh rằng : Nếu 3x + 5y chia hết cho 7 thì x + 4y chia hết cho 7 (x, y ∈N).
Điều ngược lại có đúng không?
b) Chứng minh rằng : Nếu 2x + 3y chia hết cho 17 thì 9x + 5y chia hết cho 17 (x, y thuoc N). Điều ngược lại có đúng không ?
Mấy câu này khá giống nhau làm cho câu mẫu rồi câu sau tự làm nha em =))
a) 3x + 5y ⋮ 7
=> 5.(3x + 5y) ⋮ 7
<=> 15x + 25y ⋮ 7 (1)
Lại có: 14x ⋮ 7; 21y ⋮ 7 => 14x + 21y ⋮ 7 (2)
Lấy (1) trừ (2), ta có:
(15x + 25y) - (14x + 21y) ⋮ 7
<=> x + 4y ⋮ 7
Điều ngược lại đương nhiên là đúng =)))
Chúc em học tốt !!!
Bài đâu thế , quen lắm nhưng nhớ không ra
Chứng minh rằng : Nếu 3x + 5y chia hết cho 7 thì x + 4y chia hết cho 7 (x, y ∈N).
Điều ngược lại có đúng không?
Ta có: 3.(x+4y) = 3x+12y = 3x+5y+7y = (3x+5y) +7y
Theo bài ra ta có (3x+5y) chia hết cho 7
Mà 7y chia hết cho 7
=>3.(x+4y) chia hết cho 7
Mà 3 không chia hết cho 7
=>đpcm
nhân x+4y với 3 rồi tách ra
tự túc là hạnh phúc
tự làm đi
a) Chứng minh rằng : Nếu 3x + 5y chia hết cho 7 thì x + 4y chia hết cho 7 (x, y ∈N).
Điều ngược lại có đúng không?
a) Chứng minh rằng : Nếu 3x + 5y chia hết cho 7 thì x + 4y chia hết cho 7 (x, y ∈N).
Điều ngược lại có đúng không?
Chứng minh rằng nếu ( 3x + 5y) chia hết cho 7 thì (x + 4y) chia hết cho 7 với x,y thuộc Z . Điều ngược lại cố đúng không?
Chứng tỏ rằng : Nếu 3x + 5y chia hết cho 7 thì X + 4y chia hết cho 7 ( x,y thuộc N ). Điều ngược lại có đúng không ?
3x + 5y \(⋮\)7 \(\Rightarrow\)2 . ( 3x + 5y ) \(⋮\)7
Xét tổng : 2 . ( 3x + 5y ) + ( x + 4y ) = 7x + 14y = 7 . ( x + 2y ) \(⋮\)7
Mà 2 . ( 3x + 5y ) \(⋮\)7 \(\Rightarrow\)x + 4y \(⋮\)7
Ngược lại : Xét tổng 4 . ( x + 4y ) + ( 3x + 5y ) = 7x + 21y = 7 . ( x + 3y ) \(⋮\)7
Mà 4 . ( x + 4y ) \(⋮\)7 \(\Rightarrow\)3x + 5y \(⋮\)7
Chứng tỏ rằng : Nếu 3x + 5y chia hết cho 7 thì x +4y chia hết cho 7 ( x,y thuộc N ) . Điều ngược lại có đúng không ?