Ba số x, y, z theo thứ tự lập thành một cấp số nhân có công bội q ≠ 1 . Đồng thời , các số x , 2 y , 3 z theo thứ tự đó lập thành một cấp số cộng có công sai khác 0. Khi đó công bội q bằng
A. - 1 3
B. 3
C. 1 3
D. -3
Ba số x, y, z theo thứ tự lập thành một cấp số nhân có công bội q ≠ 1 . Đồng thời, các số x, 2y, 3z theo thứ tự đó lập thành một cấp số cộng có công sai khác 0. Khi đó công bội q bằng:
A. - 1 3
B. 3
C. 1 3
D. -3
Ba số x, y, z theo thứ tự lập thành một cấp số nhân với công bội q khác 1 ; đồng thời các số x ; 2y ; 3z theo thứ tự lập thành một cấp số cộng với công sai khác 0. Tìm giá trị của q.
A. q = 1 3 .
B. q = 1 9 .
B. q = − 1 3 .
D. q = − 3.
Chọn A
Theo giả thiết ta có :
y = x q ; z = x q 2 x + 3 z = 2 2 y ⇒ x + 3 x q 2 = 4 x q ⇒ x 3 q 2 − 4 q + 1 = 0 ⇔ x = 0 3 q 2 − 4 q + 1 = 0 .
Nếu x = 0 ⇒ y = z = 0 ⇒ công sai của cấp số cộng: x ; 2y ; 3z bằng 0 (vô lí).
nếu
3 q 2 − 4 q + 1 = 0 ⇔ q = 1 q = 1 3 ⇔ q = 1 3 q = 1 .
Ba số x , y , z ( y > 0 ) theo thứ tự lập thành một cấp số cộng tăng. Giả sử x 2 , y 2 , z 2 theo thứ tự đó lập thành một cấp số nhân. Khi đó công bội của cấp số nhân đó bằng
A. 2 - 1
B. 2 + 1
C. 3 - 2 2
D. 3 + 2 2
Ba số x,y,x (y>0) theo thứ tự lập thành một cấp số cộng tăng. Giả sử x 2 , y 2 , z 2 theo thứ tự đó lập thành một cấp số nhân. Khi đó công bội của cấp số nhân đó bằng
A. 2 - 1
B. 2 + 1
C. 3 - 2 2
D. 3 + 2 2
Cho ba số thực dương x,y,z theo thứ tự lập thành một cấp số nhân, đồng thời với mỗi số thực dương a a ≠ 1 thì log a x , log a y , log a 3 z theo thứ tự lập thành cấp số cộng.
Tính giá trị biểu thức P = 1959 x y + 2019 y z + 60 z x .
A. 2019 2
B. 60
C. 2019
D. 4038
Đáp án B
Vì x , y , z > 0 theo thứ tự lập thành 1 CSN nên z = q y = q 2 x .
Vì log a x , log a y , log a 3 z theo thứ tự lập thành cấp số cộng nên 2 log a y = log a x + log a 3 z
⇔ 4 log a y = log a x + 3 log a z ⇔ 4 log a q x = log a x + 3 log a q 2 x ⇔ log a q 4 x 4 = log a x q 3 x 3
⇔ q 4 x 4 = q 6 x 4 ⇒ q = 1 ⇒ x = y = z ⇒ P = 1959 + 2019 + 60 = 4038
Cho ba số thực x, y, z theo thứ tự lập thành một cấp số nhân, đồng thời với mỗi số thực dương a a ≠ 1 thì log a x , log a y , log a 3 z theo thứ tự lập thành cấp số cộng.
Tính giá trị biểu thức P = 1959 x y + 2019 y z + 60 z x
A. 2019 2
B. 60
C. 2019
D. 4038
Đáp án D
Ta có y 2 = x z và
log a x + log a 3 = 2 log 2 y ⇔ log a x + log a z 3 = log a y 4 ⇒ x z 3 = y 4 − x 2 z 2 ⇒ x = z ⇒ x = y = z
Các số x+ 6y ; 5x + 2y; 8x + y theo thứ tự đó lập thành một cấp số cộng; đồng thời các số x- 1 ; y + 2 ; x – 3y theo thứ tự đó lập thành một cấp số nhân. Tính x 2 + y 2
A. 40
B. 25
C. 100
D. 10
Theo giả thiết ta có x + 6 y + 8 x + y = 2 5 x + 2 y x − 1 x − 3 y = y + 2 2
⇔ x = 3 y 3 y − 1 3 y − 3 y = y + 2 2 ⇔ x = 3 y 0 = y + 2 2 ⇔ x = − 6 y = − 2 .
Suy ra x 2 + y 2 = 40.
Chọn đáp án A.
Các số x + 6y ; 5x +2y ; 8x + y theo thứ tự đó lập thành một cấp số cộng, đồng thời, các số x + 5 3 ; y -1; 2x – 3y theo thứ tự đó lập thành một cấp số nhân. Hãy tìm x và y
A. x = -3 ; y = -1 hoặc x = 3 8 , y = 1 8 .
B. x=3 ; y = 1 hoặc x = − 3 8 , y = − 1 8 .
C. x= 24 ; y = 8 hoặc x = - 3 ; y = -1
D. x = -24 ; y = -8 hoặc x = 3 ; y =1
Chọn A
+ Ba số x + 6 y ,5 x + 2 y ,8 x + y lập thành cấp số cộng nên
x + 6 y + 8 x + y = 2 5 x + 2 y ⇔ 9 x + 7 y = 10 x + 4 y ⇔ x = 3 y
+ Ba số x + 5 3 , y − 1,2 x − 3 y lập thành cấp số nhân nên x + 5 3 2 x − 3 y = y − 1 2 .
Thay x= 3y vào ta được :
3 y + 5 3 2.3 y − 3 y = y − 1 2 ⇔ 3 y + 5 3 .3 y = y 2 − 2 y + 1 ⇔ 9 y 2 + 5 y − y 2 + 2 y − 1 = 0
⇔ 8 y 2 + 7 y − 1 = 0 ⇔ y = − 1 hoặc y = 1 8 .
Với y= -1 thì x= - 3; với y = 1 8 thì x = 3 8 .
Tìm các số (x,y) biết y < 0 và các số x+6y, 5x+2y, 8x+y theo thứ tự lập thành cấp số cộng đồng thời các số x+5/3, y -1, 2x – 3y theo thứ tự đó lập thành một cấp số nhân.
A. (3, -1)
B. (-3, -1)
C. (-1,-3)
D. (-1,3)
Ta có hệ phương trình:
Từ đó ta suy ra
Thế (1) vào (2) ta được: 8y2+7y-1=0⇒y=-1 hoặc y=1/8
Do y < 0 , ta được y = -1, x = -3
Đáp án B