Số nghiệm của phương trình | x 3 | - 12 | x | = m (với -1 < m < 0 ) là
A. 1
B. 2
C. 3
D. 4
C1: Phương trình x + 1/x-1= 2x-1/x-1 có bao nhiêu nghiệm A vô số nghiệm B 1 C 0 D 2 C2: nghiệm của phương trình 3x+3/x^2-1 +4/x-1 =3 là A -1 hoặc 10/3 B -1 C -10/3 D 1 hoặc -10/3
Cho bất phương trình : 1 - x ( m x - 2 ) < 0 ( * ) Xét các mệnh đề sau:
(1) Bất phương trình tương đương với mx - 2 <0
(2) m ≥ 0 là điều kiện cần để mọi x< 1 là nghiệm của bất phương trình (*)
(3) Với m < 0 , tập nghiệm của bất phương trình là 2/m< x< 1
Mệnh đề nào đúng?
A. Chỉ (1)
B. Chỉ (3)
C. (2) và (3)
D. Tất cả đúng
Cho bất phương trình : 1 - x ( mx - 2 ) < 0 ( * )
Xét các mệnh đề sau:
(I) Bất phương trình tương đương với mx - 2 < 0;
(II) m ≥ 0 là điều kiện cần để mọi x < 1 là nghiệm của bất phương trình (*)
(III) Với m < 0 , tập nghiệm của bất phương trình là 2 m < x < 1
Mệnh đề nào đúng?
A. Chỉ (I)
B. Chỉ (III)
C. (II) và (III)
D. Cả (I), (II), (III)
Cho phương trình ( m^2 - 4)x + 2 =m
a, Tìm m để phương trình trên là phương trình bậc nhất.
b, Với điều kiện nào của m thì phương trình trên có nghiệm duy nhất? Tifm nghiệm duy nhất đó theo m .
c, Tìm m để phương trình có nghiệm x = 1.
Giúp mình với ạ! Cần gấp T^T!
Cho phương trình ( m^2 - 4)x + 2 =m
a, Tìm m để phương trình trên là phương trình bậc nhất.
b, Với điều kiện nào của m thì phương trình trên có nghiệm duy nhất? Tifm nghiệm duy nhất đó theo m .
c, Tìm m để phương trình có nghiệm x = 1.
Giúp mình với ạ! Cần gấp T^T!
Cho phương trình ( m^2 - 4)x + 2 =m
a, Tìm m để phương trình trên là phương trình bậc nhất.
b, Với điều kiện nào của m thì phương trình trên có nghiệm duy nhất? Tifm nghiệm duy nhất đó theo m .
c, Tìm m để phương trình có nghiệm x = 1.
Giúp mình với ạ! Cần gấp T^T!
Cho bất phương trình: m x 2 + 2 ( m - 1 ) x + m + 2 < 0 . Điều kiện của tham số m để bất phương trình đã cho vô nghiệm là
A. m > 0
B. m ≤ 0
C. m ≥ 1 4
D. m ≤ 1 4
+ Khi m = 0, bất phương trình trở thành - 2 x + 2 < 0 ⇔ x > 1 . Vậy m = 0 không thỏa mãn yêu cầu của bài toán.
+ Khi m ≠ 0 , bất phương trình vô nghiệm khi m x 2 + 2 m - 1 x + m + 2 ≥ 0 , ∀ x ∈ ℝ . ⇔ a > 0 ∆ ' ≤ 0 ⇔ m > 0 ( m - 1 ) 2 - m ( m + 2 ) ≤ 0 .
⇔ m > 0 - 4 m + 1 ≤ 0 ⇔ m > 0 m ≥ 1 4 ⇔ m ≥ 1 4
Chọn C.
Bài 1: Cho phương trình bậc hai 2x2 -(m+3)x+ m=0. Gọi x1 và x2 là 2 nghiệm của pt. Tình gt nhỏ nhất của biểu thức
P= | x1- x2|
Bài 2: Cho phương trình bậc hai x2 - 2mx+2m-1=0. Với gt nào của m thì phương trình có 2 nghiệm thoả mãn x1=3x2
Cho phương trình : x2 - 2 (m - 2)x - 2m = 0 ( x là ẩn số ).
a) Chứng tỏ phương trình trên luôn có 2 nghiệm phân biệt x1, x2 .
b) Tìm giá trị của m để 2 nghiệm của phương trình thoả hệ thức x2 - x1 = x12
a) Ta xét :
\(\Delta'=\left(m-2\right)^2+2m=m^2-2m+4=\left(m-1\right)^2+3\ge3>0\)
Vì \(\Delta'>0\)nên phương trình trên luôn có hai nghiệm phân biệt.
b) Dễ thấy : x1<x2 nên ta có :
\(x_1=\frac{2\left(m-2\right)-\sqrt{\left(m-1\right)^2+3}}{2}=m-2-\sqrt{\left(m-1\right)^2+3}\) ; \(x_2=\frac{2\left(m-2\right)+\sqrt{\left(m-1\right)^2+3}}{2}=m-2+\sqrt{\left(m-1\right)^2+3}\)
\(x_2-x_1=x_1^2\Leftrightarrow2\sqrt{\left(m-1\right)^2+3}=\left(m-2-\sqrt{\left(m-1\right)^2+3}\right)^2\)
\(\Leftrightarrow\left(m-2\right)^2+\left(m-1\right)^2+3-2\left(m-2\right)\sqrt{\left(m-1\right)^2+3}=2\sqrt{\left(m-1\right)^2+3}\)
\(\Leftrightarrow m=2\)
Vậy m = 2