Cho hàm số f(x) có đạo hàm liên tục thỏa mãn f π 2 = 0 ∫ π 2 π [ f ' ( x ) ] 2 d x = π 4 và ∫ π 2 π cos x f ( x ) d x = π 4 Tính f ( 2018 π )
A. -1
B. 0
C. 1/2
D. 1
Cho hàm số f(x) có đạo hàm liên tục trên đoạn [0;π/4] thỏa mãn f(0)=0, ∫ 0 π 4 f ' x 2 d x = 2 và ∫ 0 π 4 sin 2 x f ( x ) d x = 1 2 Tích phân ∫ 0 π 4 f x d x bằng
A. -1/2
B. 1/2
C. -1/4
D. 1/4
Cho hàm số f(x)>0 có đạo hàm liên tục trên 0 ; π / 3 , đồng thời thỏa mãn f'(0) = 0; f(0) = 1 và f ' ' x . f x + f x cosx 2 = f ' x 2 .Tính T = f π / 3
A. .
B. .
C. .
D. .
Cho hàm số f(x) có đạo hàm liên tục trên đoạn 0 ; π thỏa mãn: ∫ 0 π f ' x d x = ∫ 0 π cos x . f x d x = π / 2 và f π / 2 = 1 . Khi đó tích phân ∫ 0 π / 2 f x d x bằng
A.0.
B. .
C. .
D. .
Cho hàm số f(x) có đạo hàm liên tục trên 0 ; π . Biết f 0 = 2 e và f(x) luôn thỏa mãn đẳng thức f ' x + sinx . f x = cosx . e cosx , ∀ x ∈ 0 ; π . Tính I = ∫ 0 π f x dx (làm tròn đến phần trăm).
A. I ≈ 6,55
B. I ≈ 17,30
C. I ≈ 10,31
D. I ≈ 16,91
Cho hàm số f(x) có đạo hàm liên tục trên đoạn [0;π/4] thỏa mãn f π 4 = 3 , ∫ 0 π 4 f x cos x d x = 1 và ∫ 0 π 4 sin x . tan x . f x d x = 2 Tích phân ∫ 0 π 4 sin x f ' x d x bằng
A. 4.
B. 2 + 3 2 2
C. 1 + 3 2 2
D. 6.
Cho hàm số y= f(x) có đạo hàm liên tục trên khoảng thỏa mãn
x
2
f
'
x
+
f
x
=
0
và
f
x
≠
0
,
∀
x
∈
0
;
+
∞
. Tính f(2) biết f(1) = e.
A. .
B. .
C. .
D. .
Cho hàm số f(x) có đạo hàm liên tục trên đoạn [0;1] đồng thời thỏa mãn f ' ( 0 ) = 9 và 9 f ' ' ( x ) + [ f ' ( x ) - x ] 2 = 9 . Tính
A. T = 2 + 9 ln 2
B. T=9
C. T = 1 2 + 9 ln 2
D. T = 2 - 9 ln 2
Cho hàm số f(x) có đạo hàm dương, liên tục trên đoạn [0;1] thỏa mãn f(0)=1 và 5 ∫ 0 1 f ' x f x 2 d x ≤ 2 ∫ 0 1 f ' x f x d x Tích phân ∫ 0 1 f x 3 d x
A. 1 14
B. 7 14
C. 54 11
D. 53 50
Cho hàm số y = f(x) có đạo hàm f’(x) liên tục trên đoạn [0; 1] thỏa mãn f(1) = 1 và I = ∫ 0 1 f x d x = 2 . Tính tích phân I = ∫ 0 1 f ' x d x
A. I = -1.
B. I = 1.
C. I = 2.
D. I = -2.
Chọn D.
Xét I = ∫ 0 1 f ' x d x Đặt t = x → t 2 = x → 2 t d t = d x
Đổi cận x = 0 → t = 0 x = 1 → t = 1 . Khi đó I = 2 ∫ 0 1 t f ' ( t ) d t = 2 A
Tính A = ∫ 0 1 t f ' ( t ) d t . Đặt u = t d v = f ' t d t → d u = d t v = f t
Khi đó