Trong không gian Oxyz, cho tứ diện ABCD có A ( 1 ; 0 ; 2 ) , B ( - 2 ; 1 ; 3 ) , C ( 3 ; 2 ; 4 ) , D ( 6 ; 9 ; - 5 ) . Tìm tọa độ trọng tâm G của tứ diện ABCD
A. G - 9 ; 18 4 ; - 30
B. G(8;12;4)
C. G 3 ; 3 ; 14 4
D. G(2;3;1)
Trong không gian tọa độ Oxyz, cho tứ diện ABCD có A(1;0;0), B(0;1;0), C(0;0;1), D(-2;1;-1). Thể tích của tứ diện ABCD bằng
A. 1
B. 2
C. 1 2
D. 1 3
Chọn đáp án C.
Ta có
Áp dụng công thức ta có:
V A B C D = 1 6 A B ⇀ . A C ⇀ . A D ⇀ = 1 2
Trong không gian Oxyz, cho tứ diện ABCD có A ( 1 ; 0 ; 2 ) , B ( - 2 ; 1 ; 3 ) , C ( 3 ; 2 ; 4 ) , D ( 6 ; 9 ; - 5 ) . Tìm tọa độ trọng tâm G của tứ diện ABCD
A. G - 9 ; 18 4 ; - 30
B. G(8;12;4)
C. G 3 ; 3 ; 14 4
D. G(2;3;1)
Chọn D.
Gọi G(a,b,c) là trọng tâm của tứ diện, ta có:
Trong không gian Oxyz, cho tứ diện ABCD với A(-1;-2;4), B(-4;-2;0), C(3;-2;1), D(1;1;1). Độ dài đường cao của tứ diện ABCD kẻ từ đỉnh D bằng
A. 3
B. 1
C. 2
D. 1 2
Trong không gian Oxyz. Cho tứ diện đều ABCD có A(0;1;2) và hình chiếu vuông góc của A trên mặt phẳng (BCD) là H (4; -3;-2). Tọa độ tâm I của mặt cầu ngoại tiếp tứ diện ABCD.
A. I(3; -2;-1).
B. I(2;-1;0).
C. I(3; -2;1).
D. I(-3; -2;1).
Trong không gian tọa độ Oxyz, cho tứ diện ABCD với A(-1;-2;4), B(-4;-2;0), C(3;-2;1) và D(1;1;1) . Độ cao của tứ diện kẻ từ D bằng
A. 3.
B. 1.
C. 2.
D. 0,5
Trong không gian Oxyz, cho tứ diện ABCD với A(1;2;1), B(2;1;3), C(3;2;2), D(1;1;1). Độ dài chiều cao DH của tứ diện bằng
A. 3 14 14
B. 14 14
C. 4 14 7
D. 3 14 7
Trong không gian với hệ trục tọa độ Oxyz, cho tứ diện ABCD với A 0 ; 1 ; 1 , B 0 ; 2 ; 1 , C − 1 ; 0 ; 2 , D − 3 ; 2 ; 5 . Tính thể tích tứ diện ABCD.
A. 1 6
B. 1
C. 1 3
D. 1 2
Trong không gian với hệ tọa độ Oxyz, cho tứ diện ABCD có A 0 ; 0 ; 3 , B 0 ; 3 ; 0 , C 3 ; 0 ; 0 , D 3 ; 3 ; 3 . Hỏi có bao nhiêu điểm M x ; y ; z (với x, y, z nguyên) nằm trong tứ diện.
A. 4
B. 1
C. 10
D. 7
Đáp án A.
Cách 1:
Do các mặt của tứ diện có diện tích bằng nhau nên
Kiểm tra các trường hợp chỉ có bốn điểm thỏa mãn.
Trong không gian Oxyz, cho tứ diện đều ABCD có A(0;1;2). Gọi H là hình chiếu vuông góc của A lên mặt phẳng (BCD). Cho H(4;-3;-2). Tọa độ tâm I và bán kính R của mặt cầu (S) ngoại tiếp tứ diện ABCD là:
A. I(2; -1; 0); R = 2 3
B. I(4; -3; -2); R = 4 3
C. I(3; -2; -1); R = 3 3
D. I(3; -2; -1); R = 9
Đáp án C
Do ABCD là tứ diện đều nên H là trọng tâm tam giác BCD và I trùng với trọng tâm G của tứ diện ABCD. Ta có:
Từ đó ta có:
Vậy đáp án C đúng.