Mặt cầu S : x 2 + y 2 + z 2 - 4 x + 1 = 0 có tọa độ tâm và bán kính R là:
A. I(2;0;0), R = 3
B. I(2;0;0), R=3
C. I(0;2;0), R = 3
D. I(-2;0;0), R = 3
Trong không gian Oxyz cho mặt cầu ( S ) : ( x - 1 ) 2 + ( y + 2 ) 2 + ( z - 2 ) 2 = 4 và mặt phẳng (P): x-y+2z-1=0 Gọi M là một điểm bất kì trên mặt cầu (S) Khoảng cách từ M đến (P) có giá trị nhỏ nhất bằng
Trong không gian Oxyz, cho mặt cầu ( S ) : ( x - 1 ) 2 + ( y + 2 ) 2 + ( z - 2 ) 2 = 4 và mặt phẳng (P): x-y+2z-1=0. Gọi M là một điểm bất kì trên mặt cầu (S). Khoảng cách từ M đến (P) có giá trị nhỏ nhất bằng
A. 4 6 3 - 2
B. 0
C. 6 - 2
D. 2 6 - 2
Trong không gian Oxyz, cho mặt cầu (S) có phương trình là: ( x + 1 ) 2 + ( y - 4 ) 2 + ( z + 3 ) 2 = 36. Số mặt phẳng (P) chứa trục Ox và tiếp xúc với mặt cầu (S) là:
A. 0
B. 1
C. 2
D. Vô số
Đáp án A
Mặt cầu (S) có tâm I(-1;4;-3) và có bán kính R = 6. Gọi H là hình chiếu vuông góc của I trên trục Ox. Ta có H(-1;0;0) và IH=5.
Gọi K là hình chiếu vuông góc của I trên mặt phẳng (P). Ta có
d(I; (P)) = IK ≤ IH = 5 < R = 6
Do đó mặt phẳng (P) luôn cắt mặt cầu (S) theo một đường tròn. Vậy không tồn tại mặt phẳng (P) chứa Ox và tiếp xúc với (S)
Cho mệnh đề:
1) Mặt cầu có tâm I(3;-2;4) và đi qua A(7;2;1) là ( x - 3 ) 2 + ( y + 2 ) 2 + ( z - 4 ) 2 = 41
2) Mặt cầu có tâm I(2;-1;3) và tiếp xúc với mp (Oxy) là ( x - 2 ) 2 + ( y - 1 ) 2 + ( z + 3 ) 2 = 9
3) Mặt cầu có tâm I(2;-1;3) và tiếp xúc với mp (Oxz) là ( x - 2 ) 2 + ( y + 1 ) 2 + ( z - 3 ) 2 = 1
4) Mặt cầu có tâm I(2;-1;3) và tiếp xúc với mp (Oyz) là ( x - 2 ) 2 + ( y + 1 ) 2 + ( z - 3 ) 2 = 4
Số mệnh đề đúng là bao nhiêu:
A. 4
B. 1
C. 2
D. 3
trong không gian với hệ trục tọa độ oxyz, cho 2 mặt phẳng: (d) : x-z+1=0; (B) : x-4y+z-3=0. lập pt mặt phẳng (p) vuông góc với hai mặt phẳng (d),(B) và tiếp xúc với mặt cầu (S): (x-1)^2 + (y-1)^2 + (z-1)^2 = 4
Trong không gian hệ tọa độ Oxyz, cho mặt cầu (S): ( x - 1 ) 2 + ( y + 2 ) 2 + ( z - 3 ) 2 = 4 . Tìm tọa độ tâm I và bán kính R của mặt cầu đó
A. I(-1;2;3), R=2
B. I(-1;2;-3), R=4
C. I(1;-2;3); R=2
D. I(1;-2;3), R=4
Trong không gian Oxyz, cho mặt cầu (S): (x - 2) 2 + (y + 1) 2 + (z + 2) 2 = 4 và mặt phẳng (P): 4x - 3y + m = 0. Với những giá trị nào của m thì mặt phẳng (P) và mặt cầu (S) có đúng một điểm chung?
A. m=-1
B. m=9 hoặc m=-31
C. m=1 hoặc m=21
D. m=-1 hoặc m=-21
Đáp án D
Mặt cầu (S) có tâm I(2;-1;-2) và có bán kính R=2. Mặt phẳng (P) và mặt cầu (S) có đúng một điểm chung khi và chỉ khi (P) tiếp xúc với (S), từ đó ta được:
Trong không gian Oxyz, cho mặt cầu (S): ( x - 2 ) 2 + ( y + 1 ) 2 + ( z + 2 ) 2 = 4 và mặt phẳng (P): 4x-3y-m=0. Tìm tất cả các giá trị thực của tham số m để mặt phẳng (P) và mặt cầu (S) có đúng 1 điểm chung
A. m=1
B. m=-1 hoặc m=-21
C. m=1 hoặc m=21
D. m=-9 hoặc m=31
Trong không gian Oxyz, cho mặt cầu S : ( x − 4 ) 2 + ( y + 5 ) 2 + ( z − 3 ) 2 = 4 . Tìm tọa độ tâm I và bán kính R của mặt cầu.
A. I − 4 ; 5 ; − 3 v à R = 2
B. I 4 ; − 5 ; 3 v à R = 2
C. I − 4 ; 5 ; − 3 v à R = 4
D. I 4 ; − 5 ; 3 v à R = 4
Trong không gian Oxyz, cho mặt cầu ( S ) : ( x + 2 ) 2 + ( y + 1 ) 2 + ( z - 1 ) 2 = 12 . Mặt phẳng nào sau đây cắt mặt cầu (S) theo giao tuyến là một đường tròn?
A. ( P 1 ) : x + y - z + 2 = 0
B. ( P 2 ) : x + y - z - 2 = 0
C. ( P 3 ) : x + y - z + 10 = 0
D. ( P 4 ) : x + y - z - 10 = 0