Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Lê Hoài Thương
Xem chi tiết
ѕнєу
Xem chi tiết
Lê Thị Thục Hiền
8 tháng 6 2021 lúc 15:43

Có \(\left(x+y+z\right)^3-\left(x^3+y^3+z^3\right)\)

\(=\left[\left(x+y\right)+z\right]^3-\left(x^3-y^3-z^3\right)\)

\(=\left(x+y\right)^3+3\left(x+y\right)^2z+3\left(x+y\right)z^2+z^3-\left(x^3+y^3+z^3\right)\)

\(=3xy\left(x+y\right)+3\left(x+y\right)^2z+3\left(x+y\right)z^2\)

\(=3\left(x+y\right)\left[xy+\left(x+y\right)z+z^2\right]\)

\(=3\left(x+y\right)\left[x\left(y+z\right)+z\left(y+z\right)\right]\)

\(=3\left(x+y\right)\left(y+z\right)\left(x+z\right)\)

Do x,y,z nguyên và cùng tính chẵn lẻ \(\Rightarrow\left(x+y\right);\left(y+z\right);\left(z+x\right)\) đều là ba số chẵn

\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)⋮8\)

mà (3;8)=1 và 3.8=24

\(\Rightarrow3\left(x+y\right)\left(y+z\right)\left(z+x\right)⋮24\) (đpcm)

Nguyễn Đỗ Bảo Linh
Xem chi tiết
Mai Anh Nguyen
8 tháng 6 2021 lúc 15:45

Có (x+y+z)3−(x3+y3+z3)(x+y+z)3−(x3+y3+z3)

=[(x+y)+z]3−(x3−y3−z3)=[(x+y)+z]3−(x3−y3−z3)

=(x+y)3+3(x+y)2z+3(x+y)z2+z3−(x3+y3+z3)=(x+y)3+3(x+y)2z+3(x+y)z2+z3−(x3+y3+z3)

=3xy(x+y)+3(x+y)2z+3(x+y)z2=3xy(x+y)+3(x+y)2z+3(x+y)z2

=3(x+y)[xy+(x+y)z+z2]=3(x+y)[xy+(x+y)z+z2]

=3(x+y)[x(y+z)+z(y+z)]=3(x+y)[x(y+z)+z(y+z)]

=3(x+y)(y+z)(x+z)=3(x+y)(y+z)(x+z)

Do x,y,z nguyên và cùng tính chẵn lẻ ⇒(x+y);(y+z);(z+x)⇒(x+y);(y+z);(z+x) đều là ba số chẵn

⇒(x+y)(y+z)(z+x)⋮8⇒(x+y)(y+z)(z+x)⋮8

mà (3;8)=1 và 3.8=24

⇒3(x+y)(y+z)(z+x)⋮24⇒3(x+y)(y+z)(z+x)⋮24 (đpcm)

Khách vãng lai đã xóa
Nguyen Vu
Xem chi tiết
Vương Ngọc Uyển
Xem chi tiết
cô nàng lém lỉnh
5 tháng 9 2017 lúc 19:47

bn ... ơi...mik ...bỏ...cuộc ...hu...hu

Vương Ngọc Uyển
5 tháng 9 2017 lúc 20:21

. Huhu T^T mong sẽ có ai đó giúp mình "((

Nguyen Vu
Xem chi tiết
Phước Nguyễn
21 tháng 2 2016 lúc 13:21

Đặt  \(A=x^3+y^3+z^3+axyz\)

Gọi  \(Q\)  và  \(r\) lần lượt là thương và dư của phép chia   \(A=x^3+y^3+z^3+axyz\)  cho   \(\left(x+y+z\right)\)

Thực hiện phép chia   \(A=x^3+y^3+z^3+axyz\)   \(:\)   \(\left(x+y+z\right)\), ta được:

\(Q=x^2+y^2+z^2-xy-yz-xz-yz\left(a+2\right)\)   và   \(r=-yz\left(x+z\right)\left(a+3\right)\)

Khi đó,  \(A=x^3+y^3+z^3+axyz=\left(x+y+z\right)\left[x^2+y^2+z^2-xy-yz-xz-yz\left(a+2\right)\right]+\left[-yz\left(x+z\right)\left(a+3\right)\right]\)

Muốn  \(A\)  chia hết cho  \(x+y+z\)  thì đa thức dư phải đồng nhất bằng  \(0\), tức  \(r=0\)

Hay  \(-yz\left(x+z\right)\left(a+3\right)=0\)  (với mọi  \(x,\)  \(y,\)  \(z\in Q\) )

Do đó,  \(a+3=0\)  \(\Rightarrow\)  \(a=-3\)

Vậy, hằng số  \(a\)  cần tìm là  \(-3\)

Nhóc_Siêu Phàm
Xem chi tiết
Hypergon
Xem chi tiết
Trần Khuyên
Xem chi tiết
Lê Nhật Khôi
20 tháng 9 2018 lúc 16:18

Đặt y+z-x=a

      x+z-y=b

      x+y-z=c

Ta thấy a+b+c=y+z-x+x+z-y+x+y-z=x+y+z

Ta có: \(P=\left(a+b+c\right)^3-a^3-b^3-c^3\)

\(=\left(a+b\right)^3+c^3+3\left(a+b\right)^2c+3\left(a+b\right)c^2-a^3-b^3-c^3\)

\(=3a^2b+3ab^2+3\left(a+b\right)^2c+3\left(a+b\right)c^2\)

\(=3ab\left(a+b\right)+3\left(a+b\right)^2c+3\left(a+b\right)c^2\)

\(=3\left(a+b\right)\left(ab+ac+bc+c^2\right)\)

\(=3\left(a+b\right)\left(a+c\right)\left(b+c\right)\)

\(=3\cdot2z\cdot2y\cdot2x\)

\(=24xyz⋮24\)

Vậy P chia hết cho 24