Given x,y such that x^2-y^2=2. The value of expression A=2(x^6-y^6)-6(x^4+y^4)
Câu 1 The function mm is defined on the real numbers by m(k) = \dfrac{k+2}{k+8}m(k)= k+8 k+2 . What is the value of 10\times m(2)10×m(2)? Answer: Câu 2 The function ff is defined on the real numbers by f(x)= ax-3f(x)=ax−3. What is the value of a if f(3)=9f(3)=9? Answer: Câu 3 The function ff is defined on the real numbers by f(x)= 2x+a-3f(x)=2x+a−3. What is the value of a if f(-5)=11f(−5)=11? Answer: Câu 4 The function ff is defined on the real numbers by f(x) = 2 + x-x^2f(x)=2+x−x 2 . What is the value of f(-3)f(−3)? Answer: Câu 5 Given a real number aa and a function ff is defined on the real numbers by f(x)=-6\times|3x|-4f(x)=−6×∣3x∣−4. Compare: f(a)f(a) f(-a)f(−a) Câu 6 There are ordered pairs (x;y)(x;y) where xx and yy are integers such that \dfrac{5}{x}+\dfrac{y}{4}=\dfrac{1}{8} x 5 + 4 y = 8 1 Câu 7 Given a negative number kk and a function ff is defined on the real numbers by f(x)=\dfrac{6}{13}xf(x)= 13 6 x. Compare: f(k)f(k) f(-k)f(−k) Câu 8 Given a positive number kk and a function ff is defined on the real numbers by f(x)=\dfrac{-3}{4}x+4f(x)= 4 −3 x+4. Compare: f(k)f(k) f(-k)f(−k). Câu 9 A=(1+2+3+\ldots+90) \times(12 \times34-6 \times 68):(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6})=A=(1+2+3+…+90)×(12×34−6×68):( 3 1 + 4 1 + 5 1 + 6 1 )= Câu 10 Given that \dfrac{2x+y+z+t}{x}=\dfrac{x+2y+z+t}{y}=\dfrac{x+y+2z+t}{z}=\dfrac{x+y+z+2t}{t} x 2x+y+z+t = y x+2y+z+t = z x+y+2z+t = t x+y+z+2t . The negative value of \dfrac{x+y}{z+t}+\dfrac{y+z}{t+x}+\dfrac{z+t}{x+y}+\dfrac{t+x}{y+z} z+t x+y + t+x y+z + x+y z+t + y+z t+x is
Assume that two numbers x and y satisfy: 2x + y = 6.
Find the minimum value of expression A = 4x2 + y2
\(2x+y=6\)
\(\Rightarrow y=6-2x\)
\(\text{Thế vào phương trình ta dc:}\)
\(4x^2+\left(6-2x\right)^2\)
\(=4x^2+36-24x+4x^2\)
\(=8x^2-24x+36\)
\(\Leftrightarrow4x\left(2x-6\right)+36\)
Rồi sao nữa quên ùi
ta có : \(2x+y=6\Leftrightarrow y=6-2y\)
thay vào A, ta có:
\(A=4x^2+\left(6-2x\right)^2\)
\(A=8\left(x^2-3x+2,25\right)+18\)
\(A=8\left(x-1,5\right)^2+18\)
\(\Rightarrow A\ge18\)
For positive real numbers x,y,z so that: x+y+z = 3. Find the minimum value of expression
A = 1/( x^2 + x) + 1/(y^2+ y) +1/( z^2 +z)
In the figure below, x = Câu 2 Find the measure of angle J if \widehat{K}=29^o K =29 o and angle J and K are supplementary. Answer: \widehat{J}= J = ^o o . Câu 3 In the figure below, x = Câu 4 In the figure below, x = Câu 5 Solve: |2x-3|-4=3∣2x−3∣−4=3, where xx is a negative number. Answer: x=x= Câu 6 Calculate: 9+|-6|:1^2 =9+∣−6∣:1 2 = Câu 7 Compare: \dfrac{36}{27} 27 36 \dfrac{4}{3} 3 4 Câu 8 Find the negative number yy such that |y+\dfrac{7}{2}|-\dfrac{1}{2}=4∣y+ 2 7 ∣− 2 1 =4. Answer: y=y= Câu 9 Find xx such that \dfrac{32}{2^x}=2 2 x 32 =2. Answer: x=x= Câu 10 Find nn such that \dfrac{(-4)^n}{64}=-16 64 (−4) n =−16. Answer: n=n= Cần gấp nhé
The smallest value of A = ( x - y ) / x^4 + y^4 + 6
Find the value of m such that x^4– mx^2 + 6 is divisible by x^2 – 1. Answer: m =
x4 - mx2 + 9 = (x2 -1)2
vây m =6 thì x4 -6x2 +9 chia hết cho x2 - 1
( ngâniq106)
given that (x+y):(5-z):(y+z):(9+y)=3:1:2:5
the value of x is
. let x, y be real number such that 4 + = 1. Find the maximum and minimum values of the expression
\(y=\frac{2x+3y}{2x+y+2}\)
1/- Four friends eating four pizzas that Jame size . John has 2/5 left , James has 1/3 left , Jacob has 1/4 left and Billy has 3/5 left . Who eats the most amount of Pizza ?
2/- Find the value of y such that : 1.1 x 1.2 x 1.3 x y = y x 2.1 x 2.2 x 2.3. Answer: y = ?