Cho hàm số y=f(x) liên tục trên [-1;3] và có đồ thị như hình vẽ. Gọi M và m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số đã cho trên [-1;3]. Giá trị M+m bằng
A. 1
B. 2
C. 3
D. 5
Cho hàm số y=f(x) có đạo hàm liên tục trên R. Bảng biến thiên của hàm số y=f'(x) được cho như hình vẽ bên. Hàm số y = f ( 1 - x 2 ) + x nghịch biến trên khoảng
A. (-4;-2)
B. (2;4)
C. (0;2)
D. (-2;0)
Cho hàm số y = f ( x ) liên tục trên R và có đạo hàm f ' ( x ) = ( 1 - x ) 2 ( x + 1 ) 3 ( 3 - x ) . Hàm số y = f ( x ) đồng biến trên khoảng nào dưới đây
Cho hàm số y=f(x) có đạo hàm liên tục trên i. Bảng biến thiên của hàm số y =f'(x) được cho như hình vẽ
Hàm số y = f ( 1 - x 2 ) + x nghịch biến trên khoảng nào sau đây?
A. (-4;-2)
B. (-1; 1)
C. (1;3)
D. (-1;0)
Đáp án A
Vậy hàm số g(x) nghịch biến trên (-4; -2)
Cho hàm số f(x) có đạo hàm f’(x) = (x – 1)(x2 – 3)(x4 – 1) liên tục trên R.Tính số điểm cực trị của hàm số y=f(x)
A. 3
B. 2
C. 4
D. 1
Đáp án A
Phương pháp giải:
Giải phương trình f’ bằng 0, tìm nghiệm và lập bảng biến thiên xét điểm cực trị
Lời giải:
Ta có
Dễ thấy f’(x) đổi dấu khi đi qua 3 điểm => Hàm số có 3 điểm cực trị.
Cho hàm số y = f(x) liên tục trên [a;b]. Giả sử hàm số u = u(x) có đạo hàm liên tục trên [a;b] và u ( x ) ∈ [ α ; β ] ∀ x ∈ [ a ; b ] hơn nữa f(u) liên tục trên đoạn [a;b]. Mệnh đề nào sau đây là đúng?
A. ∫ a b f ( u ( x ) ) u ' d x = ∫ u ( a ) u ( b ) f ( u ) d u
B. ∫ a b f ( u ( x ) ) u ' d x = ∫ a b f ( u ) d u
C. ∫ u ( a ) u ( b ) f ( u ( x ) ) u ' d x = ∫ a b f ( u ) d u
D. ∫ a b f ( u ( x ) ) u ' d x = ∫ a b f ( x ) d x
Phương pháp: Sử dụng phương pháp đổi biến, đặt t = u(x)
Cách giải:
Đặt
Đổi cận
Cho các mệnh đề :
1) Hàm số y=f(x) có đạo hàm tại điểm x 0 thì nó liến tục tại x 0 .
2) Hàm số y=f(x) liên tục tại x 0 thì nó có đạo hàm tại điểm x 0 .
3) Hàm số y=f(x) liên tục trên đoạn [a;b] và f(a).f(b)<0 thì phương trình f(x) có ít nhất một nghiệm trên khoảng (a;b).
4) Hàm số y=f(x) xác định trên đoạn [a;b] thì luôn tồn tại giá trị lớn nhất và giá trị nhỏ nhất trên đoạn đó.
Số mệnh đề đúng là:
A. 2
B. 4
C. 3
D. 1
Cho hàm số y=f(x) liên tục trên R, có đạo hàm f ’ ( x ) = x ( x – 1 ) 2 ( x + 1 ) 3 . Đồ thị hàm số y=f(x) có bao nhiêu điểm cực trị?
A. Đồ thị hàm số f(x) không có điểm cực trị
B. Đồ thị hàm số f(x) có 1 điểm cực trị
C. Đồ thị hàm số f(x) có 2 điểm cực trị
D. Đồ thị hàm số f(x) có 3 điểm cực trị
Cho hàm số y=f(x) liên tục trên R và có đạo hàm f ' ( x ) = x 3 ( x + 1 ) 2 ( x - 2 ) Hàm số y=f(x)có bao nhiêu điểm cực trị?
A. 3
B. 1
C. 0
D. 2
Cho hàm số y=f(x) liên tục trên ℝ , có đạo hàm f ' ( x ) = x 3 ( x − 1 ) 2 ( x + 2 ) . Hỏi hàm số y = f ( x ) có bao nhiêu điểm cực trị?
A. 3
B. 1
C. 0
D. 2
Đáp án D.
Ta có thể lập bảng xét dấu của f'(x) tuy nhiên thì ta có thể dùng mẹo như sau. Tại x=0; x=-2 thì y' đổi dấu do có mũ la lẻ còn x=1 thì không đổi dấu do mũ là chẵn. Vì vậy ta có thể có 2 cực trị.
Cho hàm số y = f ( x ) liên tục trên R, có đạo hàm f ' ( x ) = x 3 ( x - 1 ) 2 ( x + 2 ) . Hỏi hàm số y = f ( x ) có bao nhiêu điểm cực trị
A. 2
B. 0
C. 1
D. 3