Trong không gian Oxyz, cho hai mặt phẳng P : x + y - z + 5 = 0 và Q : 2 x + 2 y - 2 z + 3 = 0 . Khoảng cách giữa y = 1 x 2 + 3 P và Q bằng
A. 2 3
B. 2
C. 7 2
D. 7 3 6
Trong không gian Oxyz, cho hai mặt phẳng (P): x+y-z+5=0 và (Q): 2x+2y-2z+3=0 Khoảng cách giữa và bằng
Trong không gian Oxyz, cho hai mặt phẳng (P):2x - y + z = 0, (Q):x - z = 0. Giao tuyến của hai mặt phẳng (P) và (Q) có một vectơ chỉ phương là:
A. a ⇀ = (1; 0: -1)
B. a ⇀ = (1; -3: 1)
C. a ⇀ = (1; 3: 1)
D. a ⇀ = (2; -1: 1)
Trong không gian tọa độ Oxyz, cho mặt phẳng (P): 2x - 2y + z - 4 = 0 và mặt phẳng (Q): x + y - 3z - 5 = 0 . Gọi là góc giữa hai mặt phẳng và . Khẳng định nào sau đây là đúng?
Chọn A
Gọi φ là góc giữa hai mặt phẳng (P) và (Q)
Khi đó
Trong không gian Oxyz, cho hai mặt phẳng (P): x + y - z + 5 = 0 và (Q): 2x + 2y - 2z + 3 =0. Khoảng cách giữa (P) và (Q) là.
A. 2 3
B. 2
C. 7 2
D. 7 3 6
Trong không gian tọa độ Oxyz, cho mặt phẳng P : 2 x - 2 y + z - 4 = 0 và mặt phẳng Q : x + y - 3 z - 5 = 0 . Gọi φ là góc giữa hai mặt phẳng P và Q . Khẳng định nào sau đây là đúng?
A. φ ≈ 72 ° 27 '
B. φ ≈ 36 ° 28 '
C. P ⊥ Q
D. (P)//(Q)
Đáp án A
Gọi φ là góc giữa hai mặt phẳng P và Q .
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 3x-2y-z+5=0 và đường thẳng ∆ : x - 1 2 = y - 7 1 = z - 3 4 . Gọi (Q) là mặt phẳng chứa đường thẳng ∆ và song song với (P). Tính khoảng cách giữa hai mặt phẳng (P) và (Q).
A. 9 14
B. 9 14
C. 3 14
D. 3 14
Trong không gian Oxyz, cho hai mặt phẳng P : 2 x - y + z = 0 và Q : x - z = 0 . Giao tuyến của hai mặt phẳng (P) và (Q) có một vectơ chỉ phương là:
Đáp án C
P : 2 x - y + z = 0 có véc tơ pháp tuyến n 1 → 2 ; - 1 ; 1
Q : x - z = 0 có véc tơ pháp tuyến n 2 → 1 ; 0 ; - 1
Giao tuyến của hai mặt phẳng (P) và (Q) có một véc tơ chỉ phương là:
Trong không gian Oxyz, cho hai đường thẳng △ : x - 1 - 2 = y + 2 1 = z - 3 2 và mặt phẳng (P): x+y-2z+6=0. Góc giữa đường thẳng △ với mặt phẳng (P) bằng
A. 30 °
B. 45 °
C. 60 °
D. 135 °
Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (P): 3x+y+z-5=0 và (Q): x+y2+z-4=0. Khi đó, giao tuyến của (P) và (Q) có phương trình là
Đáp án D
Phương pháp giải:
Ứng dụng tích có hướng để tìm vectơ chỉ phương của đường thẳng giao tuyến và giải hệ phương trình để tìm tọa độ giao điểm của hai mặt phẳng
Lời giải: Ta có
Gọi d là giao tuyến của (P) và (Q).
Ta có
Xét hệ
Vậy phương trình đường thẳng cần tìm là