cho tam giác ABC cân tại A, trên cạnh Ab lấy điểm d Tren Ac lấy diểm E sao cho AD=AE. Gọi M là giao điểm BE và CD
CMR : a, BE=CD b, tam giác BMD = TAM GIÁC CME C, AM là phân giác BAC giải giúp mik với ... kẻ giao điểm như thế nào vậy ?
Cho tam giác ABC cân tại A . Trên cạnh AB lấy điểm D trên cạnh AC lấy điểm E sao cho AD = AE Gọi M là giao điểm của BE và CD Chứng minh rằng
a, BE=CD
b,tam giác BMD=tam giác CME
c, AM là tia phân giác của góc BAC
a.Xét tam giác DBC và tam giác ECB có:
DB=EC (AB=AC và AD=AE)
góc ABC = góc ACB (cân tại A)
BC là cạnh chung
Do đó tam giác DBC = tam giác ECB (c.g.c)
Suy ra BE= CD (ĐPCM)
a. Ta có: AD + DB = AB; AE + EC = AC mà AD = AE; AB = AC
=> DB = EC
\(\Delta\)DCE và \(\Delta\)EBD có:
DB = EC (cmt)
B = C (gt)
DC: cạnh chung
=> \(\Delta\)DCE = \(\Delta\)EBD (c.g.c)
=> BE = CD (hai cạnh tương ứng)
a, Xét \(\Delta\)AEB và\(\Delta\)ADC, có:
AE=AD(gt)
\(\widehat{A}\)Chung
AB=AC( tam giác ABC cân)
\(\Rightarrow\)\(\Delta\)AEB=\(\Delta\)ADC(c.g.c)\(\Rightarrow\)BE=CD
b, Vì tam giác ABC cân nên \(\widehat{B}\)=\(\widehat{C}\)mà \(\widehat{ABE}\)=\(\widehat{ACD}\)\(\Rightarrow\)\(\widehat{MBC}\)=\(\widehat{MCB}\)
\(\Rightarrow\)\(\Delta\)MBC cân tại M\(\Rightarrow\)MB=MC
Xét \(\Delta\)BMD và \(\Delta\)CME có:
MB=MC(cmt)
\(\widehat{MBD}\)=\(\widehat{MCE}\)(vì \(\Delta\)AEB=\(\Delta\)ADC)
Vì AB=AC mà AD=AE\(\Rightarrow\)DB=EC
\(\Rightarrow\)\(\Delta\)BMD=\(\Delta\)CME(c.g.c)
c, Xét \(\Delta\)AMB và\(\Delta\)AMC có:
AB=AC(tam giác ABC cân)
\(\widehat{ABM}\)=\(\widehat{ACM}\)(tam giác MBD= tam giác MCE)
MB=MC( tam giác MBC cân)
\(\Rightarrow\)\(\Delta\)AMB=\(\Delta\)AMC(c.g.c)\(\Rightarrow\)\(\widehat{BAM}\)=\(\widehat{CAM}\)\(\Rightarrow\)AM là tia phân giác của góc BAC
Cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D, AC lấy điểm E sap cho AD=AE. Gọi M là giao điểm của BE và CD. Chứng minh:
a) BE=CD
b) Tam giác BMD= tam giác CME
c) AM là tia phân giác của góc BAC
a) Xét tam giác BDC và tam giác CEB ta có
BC chung
góc DBC=góc ECB( do tam giác ABC cân)
BD=EC ( AB=AC mà AD=AE)
Nên 2 tam giác bằng nhau
Nên BE=CD
cho tam giác abc cân tại A. trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho AD =AE . Gọi M là giao điểm của BE và CD
Chứng minh rằng :
a) BE = CD
b) tam giác BMD = Tam giác CME
c) AM là tia phân giác của góc BAC
Cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho AD = AE. Gọi M là giao điểm của BE và CD.Chứng minh: a) Các hình chiếu của BD và CE trên BC bằng nhau. b) BE = CD. c)tam giác BMD = tam giác CME d) AM là tia phân giác của góc BAC. e)BE nhỏ hơn BC + DE chia 2
a: Kẻ DH và EK lần lượt vuông góc với BC
=>DH//EK
H,B lần lượt là hình chiếu của D,B trên BC
=>HB là hình chiếu của DB trên BC
K,C lần lượt là hình chiếu của E,C trên BC
=>KC là hình chiếu của EC trên BC
Xét ΔDHB vuông tại H và ΔEKC vuông tại K có
DB=EC
góc DBH=góc ECK
=>ΔDHB=ΔEKC
=>BH=KC và DH=EK
b: Xét ΔABE và ΔACD có
AB=AC
góc BAE chung
AE=AD
=>ΔABE=ΔACD
=>BE=CD
c: Xét ΔMDB và ΔMEC có
góc MDB=góc MEC
DB=EC
góc MBD=góc MCE
=>ΔMDB=ΔMEC
d: Xét ΔABM và ΔACM có
AM chung
MB=MC
AB=AC
=>ΔABM=ΔACM
=>góc BAM=góc CAM
=>AM là phân giác của góc BAC
Cho tam giác ABC cân tại A, trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho AD = AE. Gọi M là giao điểm của BE và CD. Chứng minh rằng :
a) BE=CD
b)tam giác BMD = tam giác CME
Cho tam giác ABC có AB=AC.Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho AD=AE. Gọi M là giao điểm của BE và CD. Chứng minh rằng:a) BE=CD
b)Tam giác BMD=Tam giác CME
c)AM là tia phân giác của góc BAC.
Xét tam giác ABE và tam giác ACD có
AB=AC(gt)
AD=AE(gt)
góc A chung
\(\Rightarrow\)tam giác ABE= tam giác ACD(cgc)
\(\Rightarrow\)BE=CD(2 cạnh tương ứng)
Cho tam giác ABC cân tại A, trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E, gọi M là giao điểm của BE và CD. Chứng minh
a, BE=CD
b, tam giác BMD=tam giác CME
c, AM là tia phân giác của BAC
cho tam giác ABC cân tại A. trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho AD=AE. Gọi M là giao điểm của BE và CD. chứng minh
a) các hình chiếu của BD và CE trên BC bằng nhau
b) BE=CD
c) tam giác BMD = tam giác CME
d) AM là tia phân giác của góc BAC
e) BE > \(\frac{BC+DE}{2}\)
Cho tam giác ABC cân tại A. Trên AB lấy D, trên AC lấy E sao cho AD=AE. Gọi M là giao điểm của BE và CD. CM;
a, BE=CD
b, tam giác BMD= tam giác CME
c, AM là phân giác của góc BAC
CÁC BẠN NHỚ GIÚP MÌNH NHÉ! CHIỀU MAI MÌNH NỘP RÙI. BẠN NÀO NHANH VÀ CHÍNH XÁC MÌNH CHO NHÉ! CẢM ƠN!
CM: a) Do t/giác ABC cân tại A => AB = AC và góc B = góc C
Ta có : AD + DB = AB
AE + EC = AC
và AD = AE(gt); AB = AC(cmt)
=> DB = CE
Xet t/giác BDC và t/giác CEB
có DB = CE (cmt)
góc B = góc C (cmt)
BC : chung
=> t/giác BDC = t/giác CEB (c.g.c)
=> BE = DC (hai cạnh tương ứng)
b) Ta có: t/giác BDC = t/giác CEB (cmt)
=> góc BDC = góc BEC (hai góc tương ứng)
=> góc EBC = góc DCB (hai góc tương ứng)
Mà góc ABE + góc EBC = góc B
góc ACD + góc DCB= góc C
và góc B = góc C (cmt)
=> góc EBA = góc DCA
Xét t/giác BMD và t/giác CME
có góc BDM = góc CEM (cmt)
DB = EC (Cmt)
góc DBM = góc MCE(cmt)
=> t/giác BMD = t/giác CME(g.c.g)
c) Ta có: t/giác BMD = t/giác CME (cmt)
=> BM = CM (hai cạnh tương ứng)
Xét t/giác ABM và t/giác ACM
có AB = AC (cmt)
BM = CM (cmt)
AM : chung
=> t/giác ABM = t/giác ACM (c.c.c)
=> góc BAM = góc CAM (hai góc tương ứng)
=> AM là tia p/giác của góc BAC
CM
a) Vì \(\Delta ABC\)cân tại A \(\Rightarrow\hept{\begin{cases}\widehat{ABC}=\widehat{ACB}\left(tinhchat\right)\\AB=AC\left(dinhnghia\right)\end{cases}}\)
Ta có:\(\hept{\begin{cases}AB=AC\\AD=AE\\AD+DB=AB;AE+EC=AC\end{cases}}\)\(\Rightarrow DB=EC\)
Xét \(\Delta BDC\)và \(\Delta CEB\)có:
\(\hept{\begin{cases}DB=EC\left(cmt\right)\\\widehat{ABC}=\widehat{ACB\left(cmt\right)}\\BCchung\end{cases}}\)\(\Rightarrow\)\(\Delta BDC\)=\(\Delta CEB\) (c-g-c)
\(\hept{\begin{cases}BE=CD\left(2canhtuongung\right)\\\widehat{BDC}=\widehat{BEC}\left(2canhtuongung\right)\\\widehat{B1}=\widehat{C1}\left(2goctuongung\right)\end{cases}}\)
b) Xét \(\Delta MBC\)có \(\widehat{B1}=\widehat{C1}\left(cmt\right)\)
\(\Rightarrow\Delta MBC\)cân tại A
\(\Rightarrow MB=MC\left(tinhchat\right)\)
Ta có: \(\hept{\begin{cases}BE=CD\left(cmt\right)\\MB=MC\left(cmt\right)\\DM+MC=DC;ME+MB=EB\end{cases}}\)\(\Rightarrow DM=ME\)
Xét \(\Delta BMD\)và \(\Delta CME\)có:
\(\hept{\begin{cases}\widehat{M1}=\widehat{M2}\left(2gocdoidinh\right)\\MD=ME\left(cmt\right)\\\widehat{BDC}=\widehat{BEC}\left(cmt\right)\end{cases}}\)\(\Rightarrow\Delta BMD=\Delta CME\)( g-c-g)
c) Bạn làm phần a và b trước nhé mình nghĩ phần c rồi nói
Hình tự vẽ
a, Vì tam giác (tg) ABC cân (gt)=> AB=AC; góc(g) DBC= gECB
mà AD=AE(gt)
Trừ vế cho vế ta đc : AB-AD=AC-AE
hay DB=EC
Lại có BC chung
=> tg DCB= tg CBE (c.g.c)
=> BE=CD