Cho mặt phẳng (P) : x + 2y – 2z + 3 = 0
và đường thẳng d: x = 1 + t y = 1 + t z = 9
Lập phương trình đường thẳng d’ là hình chiếu vuông góc của d lên mặt phẳng (P).
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x = t y = − 1 z = − t và 2 mặt phẳng (P),(Q) lần lượt có phương trình x + 2 y + 2 z + 3 = 0 ; x + 2 y + 2 z + 7 = 0 . Viết phương trình mặt cầu (S) có tâm I thuộc đường thẳng d, tiếp xúc với hai mặt phẳng (P) và (Q).
A. x + 3 2 + y + 1 2 + z − 3 2 = 4 9
B. x − 3 2 + y + 1 2 + z + 3 2 = 4 9
C. x + 3 2 + y + 1 2 + z + 3 2 = 4 9
D. x − 3 2 + y − 1 2 + z + 3 2 = 4 9
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x = t y = - 1 z = - t và 2 mặt phẳng P , Q lần lượt có phương trình x + 2 y + 2 z + 3 = 0 ; x + 2 y + 2 z + 7 = 0 . Viết phương trình mặt cầu (S) có tâm I thuộc đường thẳng d, tiếp xúc với hai mặt phẳng P và Q .
A. x + 3 2 + y + 1 2 + z - 3 2 = 4 9
B. x - 3 2 + y + 1 2 + z - 3 2 = 4 9
C. x + 3 2 + y + 1 2 + z + 3 2 = 4 9
D. x - 3 2 + y - 1 2 + z + 3 2 = 4 9
Cho mặt phẳng P : x - 2 y + z + 5 = 0 , Viết phương trình mặt phẳng (α) vuông góc với mặt phẳng (P) và chứa đường thẳng d là giao của hai mặt phẳng P 1 : x - 2 z = 0 và P 2 : 3 x - 2 y + z - 3 = 0
A. (α): 11x-2y-15z+3=0
B. (α): 11x+2y-15z-3=0
C. (α): 11x-2y+15z-3=0
D. (α): 11x-2y-15z-3=0
Chọn D
Từ phương trình hai mặt phẳng (P1), (P2) cho z = 1 ta tìm được điểm A(2;2;1) thuộc mặt phẳng (α) Tìm vecto chỉ phương của đường thẳng d. Vecto pháp tuyến của mặt phẳng cần tìm là tích có hướng của vecto pháp tuyến (P) và vecto chỉ phương của d
Cho mặt phẳng (P): x-2y+z+5=0. Viết phương trình mặt phẳng α vuông góc với mặt phẳng (P) và chứa đường thẳng d là giao của hai mặt phẳng P 1 : x - 2 z = 0 và P 2 : 3 x - 2 y + z - 3 = 0
Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng: ∆ : x 1 = y - 1 1 = z - 2 - 1 và mặt phẳng ( P ) : x + 2 y + 2 z - 4 = 0 . Phương trình đường thẳng d nằm trong mặt phẳng (P) sao cho d cắt và vuông góc với đường thẳng Δ là
Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng: △ : x 1 = y - 1 1 = z - 2 - 1 và mặt phẳng (P): x+2y+2z-4=0. Phương trình đường thẳng d nằm trong mặt phẳng (P) sao cho d cắt và vuông góc với đường thẳng Δ là
A. d : x = - 3 + t y = 1 - 2 t z = 1 - t
B. d : x = 3 t y = 2 + t z = 2 + 2 t
C. d : x = - 2 - 4 t y = - 1 + t z = 4 - t
D. d : x = - 1 - t y = 3 - 3 t z = 3 - 2 t
Cho mặt phẳng \(\left(P\right):x+2y-2z+3=0\) và đường thẳng \(d:\left\{{}\begin{matrix}x=1+t\\y=1+t\\z=9\end{matrix}\right.\)
Lập phương trình đường thẳng d' là hình chiếu vuông góc của d lên mặt phẳng (P) ?
Đường thẳng d đi qua A (1; 1; 9) và có vectơ chỉ phương \(\overrightarrow{a}\left(1;1;0\right)\). Gọi (Q) là mặt phẳng đi qua d và vuông góc với (P)
Điểm E(4;5;5), mặt phẳng (P): x-2y+2z+6=0 và đường thẳng d : x + 1 2 = y - 3 - 1 = z - 2 1 . Tìm tọa độ điểm M có hoành độ nhỏ hơn 2 nằm trên đường thẳng d có khoảng cách từ M tới mặt phẳng (P) bằng EM.
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x 1 = y + 1 2 = z + 2 3 và mặt phẳng P : x + 2 y - 2 z + 3 = 0 . Điểm M nào dưới đây thuộc đường thẳng d và cách mặt phẳng (P) một đoạn bằng 2?
A. M(-2;-3;-1)
B. M(-1;-3;-5)
C. M(-2;-5;-8)
D. M(-1;-5;-7)