Giả sử hàm số f(x) liên tục trên đoạn [a; b]. Chứng minh rằng: ∫ 0 π 2 f sinx d x = ∫ 0 π 2 f cosx d x
Cho hàm số y = f(x) liên tục trên [a;b]. Giả sử hàm số u = u(x) có đạo hàm liên tục trên [a;b] và u ( x ) ∈ [ α ; β ] ∀ x ∈ [ a ; b ] hơn nữa f(u) liên tục trên đoạn [a;b]. Mệnh đề nào sau đây là đúng?
A. ∫ a b f ( u ( x ) ) u ' d x = ∫ u ( a ) u ( b ) f ( u ) d u
B. ∫ a b f ( u ( x ) ) u ' d x = ∫ a b f ( u ) d u
C. ∫ u ( a ) u ( b ) f ( u ( x ) ) u ' d x = ∫ a b f ( u ) d u
D. ∫ a b f ( u ( x ) ) u ' d x = ∫ a b f ( x ) d x
Phương pháp: Sử dụng phương pháp đổi biến, đặt t = u(x)
Cách giải:
Đặt
Đổi cận
Cho hàm số y = f(x) liên tục trên [a;b] Giả sử hàm số u = u(x) có đạo hàm liên tục trên [a;b] và u ( x ) ∈ [ a ; b ] hơn nữa u(x) liên tục trên đoạn [a;b]Mệnh đề nào sau đây là đúng?
Giả sử hàm số f(x) liên tục trên đoạn [a; b]. Chứng minh rằng:
Giả sử hàm số f(x) liên tục trên đoạn [-a; a]. Chứng minh rằng:
(1) : nếu f là hàm số chẵn
(2): nếu f là hàm số lẻ.
Áp dụng để tính:
Giả sử hàm số f(x) là hàm số chẵn trên đoạn [-a; a], ta có:
Đổi biến x = - t đối với tích phân
Ta được:
Vậy
Trường hợp sau chứng minh tương tự. Áp dụng:
Vì
là hàm số lẻ trên đoạn [-2; 2] nên
Cho số thực a>0. Giả sử hàm số f(x) liên tục và luôn dương trên đoạn [0;a] thỏa mãn f(x).(fa-x) = 1 Tính tích phân ∫ 0 1 1 1 + f ( x ) d x
A. I = a/2
B. I = a
C. I = 2a/3
D. I = a/3
Giả sử f(x) là hàm số liên tục trên đoạn [a; b], F(x) và G(x) là hai nguyên hàm của f(x). Chứng minh rằng F(b) – F(a) = G(b) – G(a), (tức là hiệu số F(b) – F(a) không phụ thuộc việc chọn nguyên hàm).
- Vì F(x) và G(x) đều là nguyên hàm của f(x) nên tồn tại một hằng số C sao cho: F(x) = G(x) + C
- Khi đó F(b) – F(a) = G(b) + C – G(a) – C = G(b) – G(a).
Giả sử hàm số f(x) liên tục trên đoạn [-a; a]. Chứng minh rằng:
∫ - a a f x d x = 2 ∫ 0 a f x d x 1 0 2
(1) : nếu f là hàm số chẵn
(2): nếu f là hàm số lẻ.
Áp dụng để tính: ∫ - 2 2 ln x + 1 + x 2 d x
Giả sử hàm số f(x) là hàm số chẵn trên đoạn [-a; a], ta có:
Đổi biến x = - t đối với tích phân
Ta được:
Vậy
Trường hợp sau chứng minh tương tự. Áp dụng:
Vì
là hàm số lẻ trên đoạn [-2; 2] nên
Cho số thực a>0. Giả sử hàm số f(x) liên tục và luôn dương trên đoạn [0;a] thỏa mãn f(x).f(a – x) = 1, ∀ x ∈ [0;a]. Tính tích phân I = ∫ 0 a 1 1 + f ( x ) d x
Đáp án A
Phương pháp : Sử dụng phương pháp đổi biến, đặt x = a – t.
Cách giải : Đặt x = a – t => dx = –dt. Đổi cận
=>
Giả sử hai hàm số y = f(x) và y = f(x + 0,5) đều liên tục trên đoạn [0; 1] và f(0) = f(1). Chứng minh rằng phương trình f(x) − f(x + 0,5) = 0 luôn có nghiệm trong đoạn [0; 0,5]
Xét hàm số g(x) = f(x) − f(x + 0,5)
Ta có
g(0) = f(0) − f(0 + 0,5) = f(0) − f(0,5)
g(0,5) = f(0,5) − f(0,5 + 0,5) = f(0,5) − f(1) = f(0,5) − f(0)
(vì theo giả thiết f(0) = f(1)).
Do đó,
g ( 0 ) . g ( 0 , 5 ) = [ f ( 0 ) − f ( 0 , 5 ) ] . [ f ( 0 , 5 ) − f ( 0 ) ] = − f ( 0 ) − f ( 0 , 5 ) 2 ≤ 0 .
- Nếu g(0).g(0,5) = 0 thì x = 0 hay x=0,5 là nghiệm của phương trình g(x) = 0
- Nếu g(0).g(0,5) < 0 (1)
Vì y = f(x) và y = f(x + 0,5) đều liên tục trên đoạn [0; 1] nên hàm số y = g(x) cũng liên tục trên [0; 1] và do đó nó liên tục trên [0; 0,5] (2)
Từ (1) và (2) suy ra phương trình g(x) = 0 có ít nhất một nghiệm trong khoảng
Kết luận : Phương trình g(x) = 0 hay f(x) − f(x + 0,5) = 0 luôn có nghiệm trong đoạn (0;0,5)