Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 10 2019 lúc 18:27

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Dựng BE song song và bằng DC, DF song song và bằng BA. Khi đó, ABE.FDC là một lăng trụ đứng.

Ta có:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
20 tháng 5 2017 lúc 13:41

Dựng BE song song và bằng DC, DF song song và bằng BA. Khi đó ABE.FDC là một lăng trụ đứng

Khối đa diện

Ta có :

\(S_{ABE}=\dfrac{1}{2}ab.\sin60^0=ab\dfrac{\sqrt{3}}{4}\)

\(V_{C.ABE}=\dfrac{1}{3}.\dfrac{\sqrt{3}}{4}ab.h=\dfrac{\sqrt{3}}{12}abh\)

Từ đó suy ra :

\(V_{A.BCD}=V_{A.BCE}=\dfrac{\sqrt{3}}{12}abh\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 6 2018 lúc 6:20

Giải bài 6 trang 26 sgk Hình học 12 | Để học tốt Toán 12

Gọi h là khoảng cách hai đường thẳng d và d’, gọi α là góc tạo bởi hai đường thẳng d và d’.

Lần lượt vẽ hai hình bình hành BACF và ACDE.

Khi đó, ABE.CFD là hình lăng trụ tam tam giác có chiều cao h; AE = CD = b và Giải bài 6 trang 26 sgk Hình học 12 | Để học tốt Toán 12

Gọi S là diện tích đáy của hình lăng trụ .

Ta chia hình lăng trụ ABE. CFD thành ba hình chóp tam giác là: D. ABE, B. CFD, D.ABC. Ta có:

Giải bài 6 trang 26 sgk Hình học 12 | Để học tốt Toán 12

Do đó, thể tích khối tứ diện ABCD không đổi.

Sách Giáo Khoa
Xem chi tiết
_silverlining
1 tháng 4 2017 lúc 10:17

Gọi h là độ dài đường vuông góc chung của d và d’, α là góc giữa hai đường thẳng d và d’. Qua B, A, C dựng hình bình hành BACF. Qua A,C, D dựng hình bình hành ACDE.

Khi đó CFD.ABE là một hình lăng trụ tam giác. Ta có:

VDABC=VDFCB=VBCDF

= VCFD.ABE

= hSFCD= h. ab. sinα

=h. ab. sinα (là một số không đổi).



Xem thêm tại: http://loigiaihay.com/cau-6-trang-26-sgk-hinh-hoc-12-c47a2782.html#ixzz4cxsiVwHA

Kudo Shinichi
Xem chi tiết
nguyễn hùng lâm
27 tháng 12 2022 lúc 11:32

THAM KHẢO

a) BK//OC, CK//OB.

Mà OB ^OC Þ OBKC là hình chữ nhật.

b)ABCD là hình thoi nên AB = BC. OBKC là hình chữ nhật nên KO =BC.

Þ KO = BC Þ ĐPCM.

c) nếu OBKC là hình vuông thì OB = OC Þ BD = AC. Vậy ABCD là hình vuông

Xuân Trà
Xem chi tiết
Nguyễn Hoàng
Xem chi tiết
Hà Thị Kim Chi
Xem chi tiết
Trần Minh Ngọc
Xem chi tiết
Ngô Tuấn Huy
19 tháng 7 2018 lúc 9:56

Gọi trung điểm dường cheo AC, BD lần lượt là M, N
MN cắt AB, CD lần lượt ở I, K
Ta cần chứng minh góc NIB = góc MKC
Lấy H là trung điểm BC. Nối MH, NH. 
Xét tam giac ABC có AM = MC ; CH = HB => MH là đường trung bình tam giác ABC => MH =AB/2 (1) và MH // AB => góc KMH = góc INH (2)
chung minh tuong tu ta có: NH = CD/2 (3)và NH // CD =>góc INH = góc MKC (4)
Mat khac từ (1)và (3) ta có NH = MH vì đều bằng một nửa AB và CD => tam giác MHN cân tại H => góc NMH = góc MNH =>góc KMH = góc INH (vì kể với 2 góc bằng nhau) (5)
Từ (3)(4)(5) => góc MKC = góc NIB (đpcm)