Tìm số tự nhiên có hai chữ số biết rằng chữ số hàng chục lớn hơn chữ số hàng đơn vị là 2 và số đó lớn hơn 13 nhưng nhỏ hơn 29.
Một số tự nhiên có ba chữ số biết rằng chữ số hàng trăm lớn hơn chữ số hàng đơn vị là 1, chữ số hàng chục bằng chữ số hàng đơn vị. Tìm số đó, biết số đó lớn hơn 210 nhưng nhỏ hơn 303.
Các số có hai chữ số mà hàng chục lớn hơn hàng đơn vị là 2: 20, 31, 42, 53, 64, 75, 86, 97
Vì số đó lớn hơn 21 và nhỏ hơn 36 => Số cần tìm là: 31
Bài 7.
a) Một số có hai chữ số có chữ số hàng chục lớn hơn chữ số hàng đơn vị là 2. Tìm số đó biết
rằng nó lớn hơn 21 nhưng nhỏ hơn 36.
Các số có 2 chữ số mà hàng chục lớn hơn hàng đơn vị là 2: 20; 31; 42; 53; 64; 75; 86; 97
Số cần tìm lớn hơn 21 và nhỏ hơn 36 => Số cần tìm là 31
một chữ số tự nhiên có 3 chữ số biết rằng chữ số hàng trăm lớn hơn chữ số hàng đơn vị là 1 ,chữ số hàng chục bằng chữ số hàng đơn vị .tìm số đó ,biết số đó lớn hơn 201 và nhỏ hơn 303 giúp mk nha , mk cảm ơn ^-^
Số cần tìm là : 211
Tìm số tự nhiên có hai chữ số, biết rằng ba lần chữ số hàng chục lớn hơn chữ số hàng đơn vị 13 đơn vị, và nếu viết hai chữ số ấy theo thứ tự ngược lại thì được một số mới (có hai chữ số) nhỏ hơn số cũ 9 đơn vị.
tui chịu mới lớp 4
Gọi chữ số hàng chục là x \(\left(0< x\le9\right)\)
chữ số hàng dơn vị là y \(\left(0\le y\le9\right)\)
Ta có ba lần chữ số hàng chục lớn hơn chữ số hàng đơn vị 13 đơn vị
\(\Rightarrow3x-y=13\left(1\right)\)
Nếu viết hai chữ số ấy theo thứ tự ngược lại thì được một số mới (có hai chữ số) nhỏ hơn số cũ 9 đơn vị.
\(\Rightarrow xy-yx=9\Leftrightarrow10x+y-10y-x=9\)
\(\Leftrightarrow9x-9y=9\)
\(\Leftrightarrow x-y=1\left(2\right)\)
Từ (1) và (2) ta có hệ phương trình \(\hept{\begin{cases}3x-y=13\\x-y=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x=12\\x-y=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=6\left(TM\right)\\y=5\left(TM\right)\end{cases}}\)
Vậy số cần tìm là \(65\)
Học tốt
Cho số tự nhiên có hai chữ số. Biết chữ số hàng chục lớn hơn chữ số hàng đơn vị là 5, nếu viết chữ số 0 vào giữa số hàng chục và chữ số hàng đơn vị thì ta được số tự nhiên mới lớn hơn số cũ 630 đơn vị. Tìm số tự nhiên đó.
Gọi số cần tìm là ab ( có gạch ngang trên đầu)
Theo bài ra ta có: a - b =5 (1)
nếu viết xen chữ số 0 vào giữa số hàng chục và hàng đơn vị thì số mới là: a0b ( có gạch ngang trên đầu)
=> a0b - ab = 630
=> 100a + 0 + b - 10a - b = 630
=> 90a = 630
=> a = 7
Thay a = 7 vào (1) ta đc b=2
Vậy số cần tìm là 72
học tốt
Gọi số cần tìm là ab, ta có:
ab + 630 = a0b
a x 10 + b + 630 = a x 100 + b
b + 630 - b = a x 100 - a x 10
630 = a x 90 \(\Rightarrow a=7\)
\(\Rightarrow b=7-5=2\)
Vậy số cần tìm là 72.
Gọi \(a\)là chữ số hàng chục, \(b\)là chữ số hàng đơn vị.
Điều kiện \(0< a\le9;0\le b\le9\)và \(a,b\inℕ\)
Khi đó số tự nhiên cần tìm là \(\overline{ab}\)
Vì chữ số hàng chục lớn hơn chữ số hàng đơn vị là \(5\)nên ta có phương trình : \(a-b=5\)\(\left(1\right)\)
Viết chữ số \(0\)vào giữa số hàng chục và chữ số hàng đơn vị, ta được chữ số mới là \(\overline{a0b}\)
Vì số mới lớn hơn số cũ \(630\)đơn vị nên ta có phương trình : \(\overline{a0b}-\overline{ab}=630\)\(\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\)ta có hệ phương trình \(\hept{\begin{cases}a-b=5\\\overline{a0b}-\overline{ab}=630\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a-b=5\\\left(100a+b\right)-\left(10a+b\right)=630\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a-b=5\\90a=630\end{cases}\Leftrightarrow\hept{\begin{cases}a-b=5\\a=7\end{cases}}}\)\(\Leftrightarrow\hept{\begin{cases}b=2\\a=7\end{cases}}\)(thỏa mãn)
Vậy số cần tìm là \(72\)
Tìm số tự nhiên có hai chữ số biết rằng chữ số hàng chục lớn hơn chữ số hàng đơn vị là 2 và số đó lớn hơn tổng bình phương các chữ số là 1.
Tìm số tự nhiên có hai chữ số biết rằng chữ số hàng chục lớn hơn chữ số hàng đơn vị là 2 và số đó lớn hơn tổng các bình phương các chữ số của nó là 1.
Gọi số cần tìm là ab (a,b là chữ số ;a khác 0)
Theo đề bài a - b = 2 => a = b + 2
và ab - a2 - b2 = 1
=> 10a + b - (b + 2)2 - b2 = 1
=> 10b + 20 + b - b2 + 4b + 4 - b2 = 1
=> 15b + 24 - 2b2 = 1
=> b.(15 - 2b) = -23
=> b \(\in\) Ư(-23) = {-23; -1; 1; 23}
- Nếu b = -23 thì 15 - 2b = 61 (loại)
- Nếu b = -1 thì 15 - 2b = 17 (loại)
- Nếu b = 1 thì 15 - 2b = 13 (loại)
- Nếu b = 23 thì 15 - 2b = -31 (loại)
Vậy không tìm được số thỏa mãn đề bài
Gọi chữ số hàng đơn vị là a thì chữ số hàng chục là a + 2
Ta có số (a+2)a
Theo bài cho ta có:
=> (a+2)a = a2 + (a+2)2 + 1
=> 10(a+2) + a = a2 + a2 + 4a + 5
=> 11a + 20 = 2a2 + 4a + 5
=> 2a2 -7a+ 5 = 0
=> 2a2 - 2a - 5a + 5 = 0
=> 2a(a - 1) - 5(a - 1) = 0
=> (2a - 5)(a - 1) = 0
=> a - 1 = 0 hoặc 2a - 5 = 0
=> a = 1 (thỏa mãn) hoặc a = 5/2 (Loại)
Vậy số cần tìm là 31
Tìm số tự nhiên có hai chữ số biết rằng chữ số hàng chục lớn hơn chữ số hàng đơn vị là 2 và số đó lớn hơn tổng các bình phương các chữ số của nó là 1.