Cho x > 0. Chứng minh x + 1 x ≥ 2 . Từ đó tìm giá trị nhỏ nhất của x + 1 x
Cho x ≥ 2 . Chứng minh x + 1 x ≥ 5 2 . Từ đó tìm giá trị nhỏ nhất của x + 1 x .
a/ chứng minh rằng nếu tổng cảu hai số nguyên chia hết cho 3 thì tổng các lập phương của chúng chia hết cho 3
b/ tìm các giá trị của x để biểu thức: P=(x-1)(x+2)(x+3)(x+6) có giá trị nhỏ nhất. tìm giá trị nhỏ nhất đó
tự biên tự diễn thôi:
a/ gọi 2 số phải tìm là a và b, ta có a+b chia hết cho 3
ta có a^3+b^3=(a+b)(a^2-ab+b^2)=(a+b)[(a^2+2ab+b^2)-3ab]= (a+b)[(a+b)^2-3ab]0,5
vì a+b chia hết cho 3 nên (a+b)^2-3ab chia hết cho 3
do vậy (a+b)[(a+b)^2-3ab] chia hết cho 3
ai làm câu b
Cho 2 biểu thức A = 3x+2/x và B = x^2+1/x^2−x − 2/x−1 với x≠0, 1.
a) Tính giá trị của biểu thức A khi x = 2/3.
b) Chứng minh B = x−1/x .
c) Đặt P = A: B. Tìm x nguyên để P có giá trị nguyên nhỏ nhất.
Cho 2 biểu thức A = 3x+2/x và B = x^2+1/x^2−x − 2/x−1 với x≠0, 1.
a) Tính giá trị của biểu thức A khi x = 2/3.
b) Chứng minh B = x−1/x .
c) Đặt P = A: B. Tìm x nguyên để P có giá trị nguyên nhỏ nhất.
a: Thay x=2/3 vào A, ta được:
\(A=\dfrac{3\cdot\dfrac{2}{3}+2}{\dfrac{2}{3}}=\dfrac{2+2}{\dfrac{2}{3}}=4\cdot\dfrac{3}{2}=6\)
b: \(B=\dfrac{x^2+1}{x^2-x}-\dfrac{2}{x-1}\)
\(=\dfrac{x^2+1}{x\left(x-1\right)}-\dfrac{2}{x-1}\)
\(=\dfrac{x^2+1-2x}{x\left(x-1\right)}\)
\(=\dfrac{\left(x-1\right)^2}{x\left(x-1\right)}=\dfrac{x-1}{x}\)
c: P=A:B
\(=\dfrac{3x+2}{x}:\dfrac{x-1}{x}=\dfrac{3x+2}{x}\cdot\dfrac{x}{x-1}=\dfrac{3x+2}{x-1}\)
Để P là số nguyên thì \(3x+2⋮x-1\)
=>\(3x-3+5⋮x-1\)
=>\(5⋮x-1\)
=>\(x-1\in\left\{1;-1;5;-5\right\}\)
=>\(x\in\left\{2;0;6;-4\right\}\)
Kết hợp ĐKXĐ, ta được: \(x\in\left\{2;6;-4\right\}\)
Thay x=2 vào P, ta được:
\(P=\dfrac{3\cdot2+2}{2-1}=\dfrac{8}{1}=8\)
Thay x=6 vào P, ta được:
\(P=\dfrac{3\cdot6+2}{6-1}=\dfrac{18+2}{5}=\dfrac{20}{5}=4\)
Thay x=-4 vào P, ta được:
\(P=\dfrac{3\cdot\left(-4\right)+2}{-4-1}=\dfrac{-12+2}{-5}=\dfrac{-10}{-5}=2\)
Vì 2<4<8
nên khi x=-4 thì P có giá trị nguyên nhỏ nhất
Cho biểu thức sau: \(P=\dfrac{x^2-\sqrt{x}}{x-\sqrt{x}+1}+1-\dfrac{2x+\sqrt{x}}{\sqrt{x}}\)
1, Rút gọn P
2, Giả sử \(x< 1\) chứng minh rằng \(P-\left|P\right|=0\)
3, Tìm giá trị nhỏ nhất của P
a) Tìm số a để đa thức x² + 5x + a chia hết cho đa thức x - 1
b) Chứng minh rằng: x² – x + 1 > 0 với mọi số thực x?
c) Tìm giá trị nhỏ nhất của biểu thức A = x² – 6x + 11
d) Tìm giá trị lớn nhất của biểu thức B = – x² + 4x – 5
b: \(x^2-x+1=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
c: \(A=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\forall x\)
Dấu '=' xảy ra khi x=3
d: \(B=-\left(x^2-4x+5\right)=-\left(x^2-4x+4+1\right)=-\left(x-2\right)^2-1\le-1\forall x\)
Dấu '=' xảy ra khi x=2
Chứng minh: x - x + 1 = x - 1 2 2 + 3 4 với x > 0. Từ đó, cho biết biểu thức 1 x - x + 1 có giá trị lớn nhất là bao nhiêu? Giá trị đó đạt được khi x bằng bao nhiêu?
Cho hai biểu thức $A = \dfrac{\sqrt x + 1}{\sqrt x+2}$ và $B = \dfrac3{\sqrt x-1} - \dfrac{\sqrt x+5}{x-1}$ với $x \ge 0,$ $x \ne 1$.
1. Tính giá trị của biểu thức $A$ khi $x = 4$.
2. Chứng minh $B = \dfrac2{\sqrt x+1}$.
3. Tìm tất cả các giá trị của $x$ để biểu thức $P = 2A.B + \sqrt x$ đạt giá trị nhỏ nhất.
a, Ta có : \(x=4\Rightarrow\sqrt{x}=2\)
\(\Rightarrow A=\frac{2+1}{2+2}=\frac{3}{4}\)
Vậy với x = 4 thì A = 3/4
b, \(B=\frac{3}{\sqrt{x}-1}-\frac{\sqrt{x}+5}{x-1}=\frac{3\left(\sqrt{x}+1\right)-\sqrt{x}-5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{3\sqrt{x}+3-\sqrt{x}-5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{2\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{2}{\sqrt{x}+1}\)( đpcm )
với x=4(t/m DK)
=>\(\sqrt{x}\)=2
thay\(\sqrt{x}\)=2 vào biểu thức A ta được
A=(2+1)/(2+2)
A=3/4
: Cho phương trình x2 - (m - 1)x - m2 + m - 2 = 0.
a) Chứng minh rằng với mọi giá trị của m phương trình luôn có hai nghiệm trái dấu.
b) Tìm giá trị nhỏ nhất của tổng x12 + x22, trong đó x1, x2 là hai nghiệm của phương trình.
c) Tìm m để x1 = 2x2.