Cho tam giác ABC vuông tại A có AB=AC. Qua A kẻ đường thẳng xy sao cho B,C nằm cùng phía với xy. Kẻ BD và CE vuông góc với xy. Chọn câu đúng
A. DE=BD+CE
B. DE=BD-CE
C. CE=BD+DE
D. CE=BD-DE
Cho tam giác ABC vuông tại A có AB=AC. Qua A kẻ đường thẳng xy sao cho B,C nằm cùng phía với xy. Kẻ BD và CE vuông góc với xy. Tính DE biết BD=3cm;CE=2cm
A. DE=5cm
B. DE=1cm
C. DE=6cm
D. DE=4cm
Cho tam giác ABC vuông tại A có AB = AC. Qua A kẻ đường thẳng xy (B, C nằm cùng phía đối với xy). Kẻ BD và CE vuông góc với xy. Chứng minh rằng: DE = BD + CE
Ta có: ΔAEC= ΔBDA
⇒AE = BD và EC = DA
Mà DE = DA + AE
Vậy: DE = CE + BD
cho tam giác ABC vuông tại A có AB=AC. Qua A kẻ đường thẳng xy (B,C nằm cùng phía với xy). Kẻ BD và CE vuông góc với xy. CMR
a) tam giác BAD= tam giác ACE
b) DE=BD+CE
b) de=bd+ce
Cho tam giác ABC vuông tại A có AB = AC . Qua A kẻ đường thẳng xy ( B, C nằm cùng phía đối với xy ) Kẻ BD và CE vuông góc với xy . Chứng minh rằng :
a ) Tam giác BAD = Tam giác ACE
b ) DE = BD + CE
cho tam giác ABC vuông tại A có AB = AC. Qua A kẻ đường thẳng xy ( B,C cùng nằm một phía đối với xy).Kẻ BD,CE vuông góc với xy. CMR
a. tam giác ABD=tam giác ACE
b. DE=BD+CE
b) Ta có: Δ ECA = ΔDBA ( ý trên)
=) AD= EC (2 cạnh t/ ứng)
DB= AE (2 cạnh t/ứng)
=) AD+AE= EC+ DB= AE
Vậy EC+ DB= AE
Ta có; góc A1+ góc A2+ góc A3= góc xAy
A1 +A3= 1800 -900= 900 (1)
BD vuông góc với xy tại D (gt)
⇒ D= 900
Xét Δ BDA, có
D+ B+ A3= 1800 (định lí)
900 +B+ A3= 1800
B+ A3= 1800 -900 =900 (2)
Từ (1) , (2) ⇒ A1+ A3= B+ A3 =900
=) A1= B
Xét Δ ECA và ΔDBA, có
E=D =900
AC= AB (GT)
A3= B( cmt)
Vậy, Δ ECA = ΔDBA ( cạnh huyền -góc nhọn)
Cho tam giác ABC vuông tai A có AB=AC. Qua điểm A vẽ đường thẳng xy (B,C nằm cùng phía với xy). Kẻ BD và CE vuông góc với xy. CMR :
a) Tam giác BAD = Tam giác ACE
b)DE= BD+CE
Cho tam giác ABC vuông tại A có AB = AC. Qua A kẻ đường thẳng xy ( B, C nằm cùng phía đối với xy ). kẻ BD và CE vuông góc với xy. Chứng minh rằng :
a) \(\Delta BAD=\Delta ACE\)
b) DE = BD + CE
Ta có ;
Góc DAB + góc BAC + góc CAE = 180' (bù nhau)
Mà góc BAC = 90 '
---> góc DAB + góc CAE = 90' ( 1)
Ta có ΔAEC có tổng ba góc = 180'
góc E = 90'
---> góc CAE + góc ECA = 90' ( 2)
Từ 1 và 2 ---> góc ACE = góc DAB
a)Xét ΔDAB và ΔAEC có :
góc D = góc E ( vuông góc )
AB = AC ( GT )
góc ACE = góc DAB ( CMT )
---> ΔDBA = ΔEAC ( cạnh huyền- góc nhọn)
b)-->DA = EC ; DB = EA ( hai cạnh tương ứng )
---> DA + AE = EC + DB = DE
Cho tam giác ABC có góc A<90o và AB=AC. Qua A kẻ đường thẳng xy sao cho B và C nằm cùng phía đối với đường thẳng xy. Vẽ BD vuông góc với xy tại D, CE vuông góc với xy tại E
a/ Chứng minh tam giác ABD= tam giác ACE
b/ Chứng minh DE= BD+CE
cho tam giác ABC vuông tại A có AB=AC . Qua A kẻ đường thẳng xy(B,C nằm cùng phía đối với xy).kẻ BD và CE vuông góc xoi xy .CMR:
a, tam giác ABD=tam giác ACE
b, DE=BD+CE
(co ai choi lmht ko cho minh muon nick)