Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyen Vien
Xem chi tiết
vu trong luc
Xem chi tiết
jennyfer nguyen
Xem chi tiết
le thi hien
Xem chi tiết
nguyen inh phuong
Xem chi tiết
talasuperman3
Xem chi tiết
Đặng Phương Thảo
14 tháng 7 2015 lúc 21:53

S = (1 / 31 + ... + 1 / 40) + (1 / 41 + ... + 1/ 50) + (1 / 51 + ... + 1 / 60) < 
10 / 31 + 10 / 41 + 10 / 51 < 10 / 30 + 10 / 40 + 10 / 50 = 1 / 3 + 1 / 4 + 1 / 5 = 
7 / 12 + 1 / 5 < 3 / 5 + 1 / 5 = 4 / 5 
Tương tự:
S > 10 / 40 + 10 / 50 + 10 / 60 = 1 / 4 + 1 / 5 + 1 / 6 = 5 / 12 + 1 / 5 > 2 / 5 + 1 / 5 = 3 / 5 
=> 3 / 5 < S < 4 / 5

Tinh Lth
Xem chi tiết
Vũ Thị Như Quỳnh
Xem chi tiết
Lê Thị Thanh Hằng
Xem chi tiết
Cô Hoàng Huyền
16 tháng 11 2016 lúc 16:40

Ta có \(S=1+3^2+3^4+...+3^{98}\Rightarrow3^2.S=3^2+3^4+3^6+...+3^{100}\)

\(=\left(S-1\right)+3^{100}\)

\(\Rightarrow9S=S+3^{100}-1\Rightarrow S=\frac{3^{100}-1}{8}.\)

Ta thấy \(S=1+3^2+3^4+...+3^{98}=\left(1+3^{98}\right)+\left(3^2+3^4\right)+...+\left(3^{94}+3^{96}\right)\)

Vì 31 có tận cùng là 3; 32 có tận cùng là 9; 33 có tận cùng là 7, 34 có tận cùng là 1 nên 34k+2 có tận cùng là 9; 34k có tận cùng là 1. Vậy thì 1+398 có tận cùng là 0, tương tự 32 + 34 cũng có tận cùng là 0;...

Tóm lại S có tận cùng là 0 hay S chia hết cho 10. 

Pham quynh tram anh
Xem chi tiết
Ngô Văn Tuyên
29 tháng 9 2015 lúc 22:17

cho S = 1+3+32+ 33 + 3+ .......+ 399

Tổng S có tổng cộng 100 số hạng

S = 1+3+32+ 33 + 3+ .......+ 399 

= (1+3) +(32+ 33) + (3+35) .......(388+ 399 )  có 50 nhóm

= 4 + 32.(1+3)+34(1+3)+........+388(1+3)

= 4+ 32.4+34.4+........+388.4

= 4 (1+ 32+34+........+388) chia hết cho 4

b)

= (1+3 + 32+ 33) + (3+35+36+37) .......(386+387+388+ 399 )  có 100:4 = 25 nhóm

=  (1+3 + 32+ 33) + 34.(1+3 + 32+ 33) .......386.(1+3 + 32+ 33

=  40+ 34.40 .......386.40

= 40 ( 1 +34+ 38+....+386) chia hết cho 40

= 4+ 32.4+34.4+........+388.4

= 4 (1+ 32+34+........+388) chia hết cho 4