Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nhật Vy Nguyễn
Xem chi tiết
Nguyễn Minh Quang 123
Xem chi tiết
Khôi 2k9
Xem chi tiết
Nguyễn Linh Chi
27 tháng 10 2020 lúc 9:02

\(2x^2+3y^2+4x=19\)

<=> \(2\left(x^2+2x+1\right)+3y^2=21\)

<=> \(2\left(x+1\right)^2+3y^2=21\)

<=> \(2\left(x+1\right)^2=21-3y^2\ge0\)

=> \(y^2\le7\)(1) 

Mặt khác \(2\left(x+1\right)^2=21-3y^2⋮2\)

=> 21 - 3y^2 là số chẵn  => 3y^2 là số lẻ => y^2 là số chính phương lẻ  (2) 

Từ (1) và (2) => y = 1 hoặc y = - 1=> y^2 = 1 

=> 2 (x + 1)^2 = 18 <=> (x + 1 ) = 9 <=> x + 1 = 3 hoặc x + 1 = - 3 <=> x = 2 hoặc x = -4

Vậy phương trình có 4 nghiệm ( 2; 1) (2; -1); (-4; 1 ); (-4; -1)

Khách vãng lai đã xóa
Lê Châu Linh
Xem chi tiết
thien ty tfboys
19 tháng 11 2017 lúc 22:38

Áp dụng bất đẳng thứ Cauchy (AM-GM):

\(\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}\ge3\sqrt[3]{\frac{\left(xyz\right)^2}{xyz}}=3\sqrt[3]{xyz}\)

Mà: \(0\le xyz\le1\Leftrightarrow xyz=1\)

Từ đó: \(\hept{\begin{cases}xy=\frac{1}{z}\\\frac{xy}{z}\end{cases}\Leftrightarrow\frac{1}{z^2}}\)  (1)

Tương tự: \(\hept{\begin{cases}yz=\frac{1}{x}\\\frac{yz}{x}\end{cases}\Leftrightarrow\frac{1}{x^2}}\)  (2) 

Và:  \(\hept{\begin{cases}zx=\frac{1}{y}\\\frac{zx}{y}\end{cases}}\Leftrightarrow\frac{1}{y^2}\)  (3) 

Từ trên (1)(2)(3): \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=3\) (Dạng Bunhiacopxki)

Dấu "=" xảy ra khi \(\Leftrightarrow x=y=z=1\)

Trần Hữu Ngọc Minh
19 tháng 11 2017 lúc 22:25

Cô si 3 số đó lại đi

KAl(SO4)2·12H2O
19 tháng 11 2017 lúc 22:28

\(PT\Leftrightarrow xy^2+yz^2+xz^2=3xyz\ge3\sqrt[3]{xyz^4}\)

Từ đó suy ra: xyz = 1 từ đó suy ra (x,y,z) = (1,1,1);(1,−1,−1);(−1,−1,1);(−1,1,−1)

Hoàng Nga Thi
Xem chi tiết
KuDo Shinichi
Xem chi tiết
Nguyen Ha Nam
Xem chi tiết

bạn hỏi bạn Bui Huyen nha

https://olm.vn/thanhvien/900487

Nguyen Ha Nam
19 tháng 8 2019 lúc 20:25

bạn ơi Bui Huyen học ở trương tiểu học Thọ Lộc

Nguyễn Trí Dũng
Xem chi tiết
Hoàng Như Quỳnh
5 tháng 7 2021 lúc 8:31

\(x=y=z=0\)là n0 của pt

xét x,y,z khác 0 

\(\frac{5\left(xy+yz+zx\right)}{xyz}=4\)

\(5\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=4\)

\(< =>\frac{1}{x}+\frac{1}{y}+\frac{1}{z}⋮4\)

ta có \(\left|x\right|\ge1< =>\frac{1}{\left|x\right|}\le1\)

tương tự với 2 cái còn lại 

\(\frac{1}{\left|x\right|}+\frac{1}{\left|y\right|}+\frac{1}{\left|z\right|}\le3\)

\(\frac{1}{\left|x\right|}+\frac{1}{\left|y\right|}+\frac{1}{\left|z\right|}\ge\left|\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right|\)

\(< =>\left|\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right|\le3\)

\(-3\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le3\)

mà \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}⋮4\)từ -3 đến 3 chỉ có số 0 chia hết cho 4 mà x,y,z khác 0 (loại)

vậy bộ nghiệm duy nhất của pt là \(x=y=z=0\)

Khách vãng lai đã xóa
Phạm Hoàng Giang 2
30 tháng 10 2023 lúc 20:07

trường hợp 10,5,2 và hoán vị của bộ này vẫn thỏa mãn đề bài mà nhỉ

 

KAl(SO4)2·12H2O
Xem chi tiết
Đỗ Đức Đạt
17 tháng 11 2017 lúc 20:21

Tui vừa trả lời 3 bài này ở câu của Nguyễn Anh Quân

Xem tui giải đúng không nha

Xin Wrecking Ball nhận xét

KAl(SO4)2·12H2O
17 tháng 11 2017 lúc 20:22

Đỗ Đức Đạt cop trên Yahoo

Xua Tan Hận Thù
17 tháng 11 2017 lúc 20:23

1...Chia cả hai vế cho xyz ta được 
3xy/xyz + 3yz/xyz + 3zx/xyz = 4xyz/xyz 
<=>3/x + 3/y + 3/z = 4 
<=>1/x + 1/y + 1/z = 4/3 
Vì x,y,z bình đẳng nên giả sử 0<x<=y<=z 
+nếu x>=4=> y>=4;z>=4 
=> 1/x + 1/y + 1/z <= 1/4 + 1/4 + 1/4 =3/4 < 4/3 => pt vô nghiệm 
+nếu x=1 => 1+1/y+1/z=4/3 
<=> 1/y+1/z=1/3 
<=> 3(y+z)=yz 
<=> 3y+3z-yz=0 
<=> 3y-yz+3z-9=-9 
<=> y(3-z)-3(3-z)=-9 
<=> (3-z)(3-y)=9 
Vì y,z nguyên dương nên (3-y),(3-z) nguyên dương 
mà 9=3*3=1*9=9*1 
==>3-z=3 và 3-y=3 => z=0 và y=0 (loại vì y,z nguyên dương) 
+nếu x=2 => 1/2+1/y+1/z=4/3 
<=> 1/y+1/z=5/6 
<=> 6(y+z)=5yz 
<=> 6y+6z-5yz=0 
<=> 30y-25yz+30z-36=-36 
<=> 5y(6-5z)-6(6-5z)=-36 
<=> (5z-6)(5y-6)=36 
Vì y,z nguyên dương nên (5y-6),(5z-6) nguyên dương 
mà 36=6*6=2*18=18*2=3*12=12*3=4*9=9*4 
Giải tương tự phần trên ta được 
y=2,z=3 hoặc y=3,z=2 
+nếu x=3 => 1/3+1/y+1/z=4/3 
<=> 1/y+1/z=1 
Giải tương tự phần trên ta được y=z=2 
Vậy (x;y;z)=(2;2;3);(2;3;2);(3;2;2)

MK cop nhưng ủng hộ mk nha , mk có lòng trả lời