Cho tam giác ABC có góc A gấp đôi góc B, góc b gấp đôi góc C. CMR: 1/BC+1/AC=1/AB
cho tam giác ABC có góc A gấp đôi góc B , góc B gấp đôi góc C .
CMR: \(\frac{1}{BC}+\frac{1}{AC}=\frac{1}{AB}\)
Cho tam giác ABC có góc A gấp đôi góc C. CMR: AB^2 + AB.AC =BC^2
cho tam giác abc có góc a gấp đôi góc b. CMR ac2 +ab.ac=bc2
Cho tam giác ABC có AH I BC và góc BAH gấp đôi góc C. Tia phân giác của góc B cắt AC ở E.
CMR: HE là phân giác của góc AHC.
Cho tam giác ABC có góc A gấp đôi góc B. CMR: AC2 + AB.AC = BC2
-Kẻ đường phân giác AD của △ABC.
-Có: \(\widehat{ADC}=\widehat{BAD}+\widehat{ABD}\) (\(\widehat{ADC}\) là góc ngoài của △ABD)
\(\widehat{BAC}=\widehat{BAD}+\widehat{CAD}\)
Mà \(\widehat{ABD}=\widehat{CAD}\left(=\dfrac{1}{2}\widehat{BAC}\right)\)
\(\Rightarrow\widehat{ADC}=\widehat{BAC}\)
-Xét △ADC và △BAC có:
\(\widehat{ADC}=\widehat{BAC}\left(cmt\right)\)
\(\widehat{ACB}\) là góc chung.
\(\Rightarrow\)△ADC∼△BAC (g-g).
\(\Rightarrow\dfrac{DC}{AC}=\dfrac{AC}{BC}\)(tỉ số đồng dạng)
-Xét △ABC có: AD là phân giác (gt)
\(\Rightarrow\dfrac{BD}{CD}=\dfrac{AB}{AC}\) (định lí đường phân giác của tam giác)
\(\Rightarrow\dfrac{BD}{AB}=\dfrac{CD}{AC}=\dfrac{BD+CD}{AB+AC}=\dfrac{BC}{AB+AC}\)
\(\Rightarrow CD=\dfrac{BC.AC}{AB+AC}\)
Mà \(\dfrac{DC}{AC}=\dfrac{AC}{BC}\left(cmt\right)\)
\(\Rightarrow\dfrac{\dfrac{BC.AC}{AB+AC}}{AC}=\dfrac{AC}{BC}\)
\(\Rightarrow\dfrac{BC}{AB+AC}=\dfrac{AC}{BC}\)
\(\Rightarrow\left(AB+AC\right).AC=BC^2\)
\(\Rightarrow AC^2+AB.AC=BC^2\)
AI trả lời đầu tiên 1 mk cho 1 like nha
Cho tam giác ABC có 2 góc A gấp đôi góc B.kẻ phân giác AD
Từ D kẻ DE//AB (E thuộc AC)
Từ E kẻ EF//AD (F thuộc BC )
Và từ F kẻ FK//DE(K thuộc AC)
a/tìm tất cả góc bằng B
b/tìm trên hình vẽ các tam giác có 2 góc bằng nhau
c/cmr DE là phân giác góc ADC , EF là phân giác của góc DEC,FK là phân giác EFK
nhớ vẽ hình lun nha
Cho hình vẽ
a, Ta có; \(CN=BM\)
\(CN\leftarrow MN=BM-MN\)
\(CM=BN\)
Xét \(\Delta ACM\) và \(\Delta ABN\)
\(AC=AB''gt''\)
\(CM=BN\)
\(\widehat{ABM}=\widehat{ABN}''gt''\)
\(\Rightarrow\Delta ACM=\Delta ABN\)
\(\Rightarrow AM=AN\)
\(\Rightarrow\Delta AMN\) Cân
b, \(\Delta ABM\) cân tại \(B\rightarrow\widehat{ABM}=\widehat{MAB}\)
\(\Rightarrow\widehat{ABM}=90^o-\widehat{CAM}\)
Mà \(\widehat{ABM}=180^o-\widehat{AMC}\)
\(\Rightarrow180^o-''180^o-\widehat{CAM}-\widehat{AMC}''\)
\(\Rightarrow\widehat{CAM}+\widehat{ACM}\)
Từ 1 và a/ \(\Rightarrow90^o-\widehat{CAM}-CAM+\widehat{AMC}\)
\(\Leftrightarrow\widehat{CAM}=\frac{90^o+\widehat{ACM}}{2}=\frac{45^o}{2}=22\)
c, \(\widehat{NAM}=90^o-2.\widehat{CAM}=45^o\)
P/s; Em ko chắc đâu nhé
cho tam giac ABC có góc A gấp đôi góc B. kẻ phân giác AD. Từ D kẻ DE// AB (E thuộc AC). từ E kẻ EF//AD(F thuộc BC) và từ F kẻ FK//DE( K thuộc AC)
A) tìm tất cả các góc bằng B
B) tìm trên hình vẽ có 2 góc bằng nhau
C) cmr: DE là phân giác của góc ADC, EF là phân giác góc DEC, FK là phân giác góc EFC
Cho tam giác ABC vuông tại A có độ dài cạnh BC gấp đôi độ dài cạnh AB. Tia phân giác của góc B cắt cạnh AC ở D.Gọi E là trung điểm của BC.
1,
a, Chứng minh DB là phận giác của góc ADE.
b, BD=DC.
2, Tính góc B và góc C của tam giác ABC.
3, Gọi K là giao điểm của ED với BA. Chứng minh BD vuông góc với CK
cho tam giác ABC có góc A gấp đôi góc B vẽ tia phân giác AD của góc A
từ D vẽ DE song song với AB ( E thuộc AC)
từ E vẽ EF song song với AD ( F thuộc BC)
từ F vẽ FK song song với DE (K thuộc AC)
a) tìm tất cả các góc = góc B
b)tìm trên hình vẽ các góc có 2 góc bằng nhau
c)CMR :DE là phân giác của góc ADC,EF là phân giác của góc DEC,FK là phân giác của góc EFC
cho tam giác ABC có góc A gấp đôi góc B vẽ tia phân giác AD của góc A
từ D vẽ DE song song với AB ( E thuộc AC)
từ E vẽ EF song song với AD ( F thuộc BC)
từ F vẽ FK song song với DE (K thuộc AC)
a) tìm tất cả các góc = góc B
b)tìm trên hình vẽ các góc có 2 góc bằng nhau
c)CMR :DE là phân giác của góc ADC,EF là phân giác của góc DEC,FK là phân giác của góc EFC