Chứng tỏ ab + ab chia hết cho 11
a, chứng tỏ ab(a+ b) chia hết cho 2
b, chứng tỏ ab+ ba chia hết cho 11
c , chứng tỏ aaa chia hết cho 37
d , chứng tot aaabbb chia hết cho 37
e, ab- ba chia hết cho 9 với a> b
a/ \(\overline{ab}+\overline{ba}=10a+b+10b+a=11a+11b=11\left(a+b\right)⋮11\)
b/ \(\overline{ab}-\overline{ba}=10a+b-10b-a=9a-9b=9\left(a-b\right)⋮9\)
c/ \(\overline{abba}=1001a+110b=11.91.a+11.10.b=11\left(91a+10b\right)⋮11\)
cho ab+cd chia hết cho 11. Chứng tỏ abcd chia hết cho 11
Một số chia hết cho 11 khi hiệu giữa tổng các chữ số ở vị trí chẵn (hoặc lẻ) với tổng các chữ số ở vị trí lẻ (hoặc chẵn) chia hết cho 11
\(\overline{abcd}⋮11\) khi \(\left(a+c\right)-\left(b+d\right)⋮11\) hoặc \(\left(b+d\right)-\left(a+c\right)⋮11\)
Ta có
\(\overline{ab}+\overline{cd}=10.a+b+10.c+d=\)
\(=11.a+11.c+\left(b+d\right)-\left(a+c\right)=\)
\(=11.\left(a+c\right)+\left(b+d\right)-\left(a+c\right)⋮11\)
Ta có \(11.\left(a+c\right)⋮11\Rightarrow\left(b+d\right)-\left(a+c\right)⋮11\)
\(\Rightarrow\overline{abcd}⋮11\)
a/ Chứng tỏ rằng số abcabc chia hết cho 7;11;13
b/ Chứng tỏ rằng số ab + ba chia hết cho 11
c/ Cho a,b € N biết 9.a + 7.b chia hết cho 11 . Chứng tỏ 2a+4b chia hết cho 11
a) Theo bài ra ta có:
abcabc = 1000abc + abc
= ( 1000 +1)abc
=1001abc.
Vì : 1001 chia hết cho 11 => abcabc chia hết cho 11.
1001 chia hết cho 7 => abcabc chia hết cho 7.
1001 chia hết cho 13 => abcabc chia hết cho 13.
=> Điều phải chứng minh.
b) Ta có:
ab+ba= 10a+b+10b+a=11a+11b=11(a+b) chia hết cho 11.
=> Đpcm.
c)Giả sử 9a+7b chia hết cho 11,ta có:
9(2a+4b)-2(9a+7b)= 18a+36b-(18a+14b)=18a+36b-18a-14b=36b-14b=(36-14)b=22b
Vì 22 chia hết cho 11 => 22b chia hết cho 11.
Mà 9a+7b chia hết cho 11 => 2(9a+7b) chia hết cho 11.
=> 9(2a+4b) chia hết cho 11.
Vì UWCLN(9;11)=1 => 2a+4b chia hết cho 11.
=> Đpcm.
k tớ nha <3
Ta có :
abcabc = 1000abc + abc
= 1001 . abc
= 7 . 11 . 13 . abc chia hết cho 7 ; 11 ; 13
Chứng tỏ rằng:
a)ab-ba chia hết cho 9
b)Nếu ab + cd chia hết cho 11 thì abcd chia hết cho 11
a) ab - ba = a .10+b - (b .10+a)
= a .10+b - b .10 - a
=( a .10 - a)-(b.10-b)
= a.9-b.9
= 9.(a-b) chia het cho 9
b) abcd = ab .100 +cd
= ab .99 +ab+cd
= ab .11 . 9 +(ab+cd)
vì ab .11 .9 chia hết cho 11 nên nếu ab+cd chia hết cho 11 thì abcd chia hết cho 11
b)Ta có:abcd=ab.100+cd
=ab.99+ab+cd
=ab.11.99+(ab+cd)
Vì 11\(⋮\)11=>ab.11.9 chia hết cho 11
=>(ab+cd)chia hết cho 11
Vậy abcd chia hết cho 11
k mik nha
chứng tỏ rằng nếu ab cộng cd chia hết cho 11 thì abcd chia hết cho 11
chứng tỏ rằng a+b chia hết cho 2
chứng tỏ rằng ab+ba chia hết cho 11
ab=10.a+b
ba=10.b+a
ab+ba=11.a-11.b=11.(a-b)=> ab+ba chia hết cho 11
cái đầu thiếu đề (không có dữ liệu chính)
Ta có: ab + ba = (10a.1b) + (10b.1a)
=> (1b+10b).(1a+10a)
= 11b + 11a
= 11.2.ab chia hết cho 11
=> đpcm
chứng tỏ ab+ba chia hết cho 11
ab+ba=10a+b+10b+a=(10a+a)+(10b+b)=11(a+b)⋮11
\(ab+ba=10a+b+10b+a=11a+11b=11\left(a+b\right)⋮11\)
Chúc bạn học tốt
chứng tỏ ab+ba chia hết cho 11
a)chứng tỏ rằng ab(a+b) chia hết cho 2 (a;b thuộc N)
b)chứng minh rằng ab+ba chia hết cho 11
a) ab(a+b) = a2b + ab2 = 2ab2 chia hết cho 2
b)ab+ba
Ta có:ab=10a+b
ba=10b+a
ab+ba=10a+b+10b+a
= 11a + 11b
Ta thấy: 11a⋮11 ; 11b⋮11
=>ab+ba⋮11 (ĐPCM)