Chứng minh rằng với mọi số tự nhiên n thì: (n+1)(n+4) ⋮ 2
(f) Chứng minh rằng với mọi số tự nhiên n > 1 thì: 5^n+2 + 26.5^n + 82n+1 chia hết cho 59.
(g) Chứng minh rằng với mọi số tự nhiên n > 1 thì số 4^2n+1 + 3^n+2chia hết cho 13.
(h) Chứng minh rằng với mọi số tự nhiên n > 1 thì số 5^2n+1 + 2^n+4+ 2^n+1 chia hết cho 23.
(i) Chứng minh rằng với mọi số tự nhiên n > 1 thì số 11n+2 + 122n+1 chia hết cho 133.
(j) Chứng minh rằng với mọi số tự nhiên n > 1: 5^2n−1 .26n+1 + 3^n+1 .2^2n−1 chia hết cho 38
1+2+3+4+5+6+7+8+9=133456 hi hi
đào xuân anh sao mày gi sai hả
???????????????????
a) chứng tỏ rằng với mọi số tự nhiên n thì tích (n+4) (n+5) chia hết cho 2
b) chứng minh n+2012 và n+2013 là 2 số nguyên tố cùng nhau với mọi số tự nhiên n.
Nếu n=2k (k thuộc N) thì n+5=2k+5 chia hết cho 2
Nếu n=2k+1 (k thuộc N) thì n+4 =2k+5 chia hết cho 2
Vậy (n+4)(n+5) chia hết cho 2
Câu a
Nếu n=2k thì n+4 = 2k+4 chia hết cho 2 => (n+4)(n+5) chia hết cho 2
Nếu n=2k+1 thì n+5=2k+5+1=2k+6 chia hết cho 2=> (n+4)(n+5) chia hết cho hai
Vậy (n+4)(n+5) chia hết cho 2
Câu b
Ta có n+2012 và n+2013 là hai số tự nhiên liên tiếp
Gọi ƯCLN(n+2012; n+2013)=d
Vì ƯCLN(n+2012;n+2013)=d
=> n+2012 chia hết cho d, n+2013 chia hết cho d
Mà n+2013-n+2012=1=> d=1
Vậy n+2012 và n+2013 là 2 số nguyên tố cùng nhau
1. Chứng minh rằng với mọi số tự nhiên n thì ƯCLN(21 4;14 3) 1 n n
2. Chứng minh rằng: Nếu p là số nguyên tố lớn hơn 3 và 2 1 p cũng là số nguyên tố thì 4 1 p
là hợp số?
Chứng minh rằng với mọi số tự nhiên n thì n2 + n + 1 không chia hết cho 4
xét các trường hợp x=4k
x=4k+1
x=4k+2
x=4k+3
xong thay vài
ta xét :
n2 +n+1=n(n+1)+1
ta thấy 2 số tự nhiên liên tiếp thì tích của chúng sẽ là 1 số chẵn
suy ra : n(n+1)+1=2k+1 (k là số tự nhiên )
Vì 2k+1 là số lẻ nên 2k+1 không chia hết cho 4
bn tự kết luận nha
Với n = 1 => 1 + 1 + 1 = 3 ko chia hết cho 4
Với n = 2 => 4+2+1=7 ko chia hết cho 4
Vậy n>2
Một số lơn hơn 2 chia cho 2 sẽ có 2 khả năng xảy ra : n = 2k ; n = 2k + 1(k thuộc N*)
Với n = 2k
=> \(4k^2+2k+1\)ko chia hết cho 4
Với n = 2k + 1
\(\Rightarrow4k^2+4k+1+2k+2=4k^2+6k+3\)ko chia hết cho 4
chứng minh rằng với mọi số tự nhiên n≥1 thì (n+2)(n+1)(n+8) không thể là lập phương của một số tự nhiên.
Bài 6
a, chứng minh rằng với mọi số tự nhiên n thuộc N thì 60n +15 chia hết cho 15 nhưng không chia hết cho 30
b, chứng minh rằng không có số tự nhiên nào chia 15 dư 6 , chia 9 dư 1
c, chứng minh rằng 1005a +2100b chia hết cho 15 , với mọi số tự nhiên a,b thuộc N
d, chứng minh rằng A= n2+n+1 không chia hết cho 2 và 5 với mọi số tự nhiên n thuộc N
a,60 chia hết cho 15 => 60n chia hết cho 15 ; 45 chia hết cho 15 => 60n+45 chia hết cho 15 (theo tính chất 1)
60n chia hết cho 30 ; 45 không chia hết cho 30 => 60n+45 không chia hết cho 30 (theo tính chất 2)
b,Giả sử có số a thuộc N thoả mãn cả 2 điều kiện đã cho thì a=15k+6 (1) và a=9q+1.
Từ (1) suy ra a chia hết cho 3, từ (2) suy ra a không chia hết cho 3. Đó là điều vô lí. Vậy không có số tự nhiên nào thoả mãn đề.
c,1005 chia hết cho 15 => 1005a chia hết cho 15 (1)
2100 chia hết cho 15 => 2100b chia hết cho 15 (2)
Từ (1) và (2) suy ra 1005a+2100b chia hết cho 15 (theo tính chất 1)
d,Ta có : n^2+n+1=nx(n+1)+1
nx(n+1) là tích của 2 số tự nhiên liên tiếp nên chia hết cho 2 suy ra nx(n+1)+1 là một số lẻ nên không chia hết cho 2.
nx(n+1) là tích của 2 số tự nhiên liên tiếp nên không có tận cùng là 4 hoặc 9 nên nx(n+1)+1 không có tận cùng là 0 hoặc 5, do đó nx(n+1)+1 không chia hết cho 5.
Mình xin trả lời ngắn gọn hơn! a)60 chia hết cho 15=> 60n chia hết cho 15 15 chia hết cho 15 =>60n+15 chia hết cho 15. 60 chia hết cho 30=>60n chia hết cho 30 15 không chia hết cho 30 =>60n+15 không chia hết cho 30 b)Gọi số tự nhiên đó là A Giả sử A thỏa mãn cả hai điều kiện => A= 15.x+6 & = 9.y+1 Nếu A = 15x +6 => A chia hết cho 3 Nếu A = 9y+1 => A không chia hết cho 3 => vô lí.=> c) Vì 1005;2100 chia hết cho 15=> 1005a; 2100b chia hết cho 15. => 1500a+2100b chia hết cho 15. d) A chia hết cho 2;5 => A chia hết cho 10. => A là số chẵn( cụ thể hơn là A là số có c/s tận cùng =0.) Nếu n là số chẵn => A là số lẻ. (vì chẵn.chẵn+chẵn+lẻ=lẻ) Nếu n là số lẻ => A là số lẻ (vì lẻ.lẻ+lẻ+lẻ=lẻ) => A không chia hết cho 2;5
a, Chứng minh rằng với mọi số tự nhiên n thì \(\dfrac{n+1}{2n+3}\) là phân số tối giản
b, Chứng minh rằng với mọi số tự nhiên a, b thì \(\dfrac{7a+5b}{9a+4b}\) là phân số tối giản
a/
Gọi $d=ƯCLN(n+1, 2n+3)$
$\Rightarrow n+1\vdots d; 2n+3\vdots d$
$\Rightarrow 2n+3-2(n+1)\vdots d$
$\Rightarrow 1\vdots d$
$\Rightarrow d=1$
Vậy $\frac{n+1}{2n+3}$ là phân số tối giản với mọi số tự nhiên $n$
b/
Cho $a=2, b=2$ thì phân số đã cho bằng $\frac{24}{26}$ không là phân số tối giản bạn nhé.
Bạn xem lại đề.
chứng minh rằng mọi số tự nhiên n thì ( n + 1) + ( n + 4) chia hết cho 2
sai đề rồi
(n + 1) + ( n + 4)
= n + 1 + n + 4
= n x2 +5 \(⋮̸\) 2
Trúc ơi hình như cậu viết sai đầu bài rồi nếu như vậy nó sẽ không bao giờ chia hết cho 2, vì
\(\left(n+1\right)+\left(n+4\right)=n+1+n+4=n+n+1+4=2n+5\)n+5 Do 2n chia hết cho2 nên 5 phải chia hết cho 2 nhưng 5 lại không chia hết cho 2 => không chia hết cho 2
Chứng minh rằng với mọi số tự nhiên n thì n(n+1) chia hết cho 2
nếu n là số tự nhiên chẵn thì n chia hết cho 2, do đó n(n + 1) chia hết cho 2
nếu n là số tự nhiên lẻ thì n + 1 là số tự nhiên chẵn nên chia n + 1 chia hết cho 2, do đó n(n + 1) chia hết cho 2
Vậy với mọi số tự nhiên n thì n(n + 1) chia hết cho 2.
+)Nếu n chẵn suy ra n(n+1) suy ra n(n+1) chẵn suy ra chia hết cho 2
+)Nếu n lẻ suy ra n+1 chẵn suy ra n(n+1) chẵn suy ra n(n+1) chia hết cho 2
Vậy với mọi n thì n(n+1) chia hết cho 2
(Chỗ suy ra và chia hết bạn thay bằng kí tự nhé máy tính ko viết được)