Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nuyen Gia
Xem chi tiết
the anh
Xem chi tiết
Quan Bai Bi An
Xem chi tiết
Phạm Thị Thùy Linh
Xem chi tiết
TFBoys Nam Thần
Xem chi tiết
Trịnh Như Ngọc
Xem chi tiết
Kiệt Nguyễn
11 tháng 1 2021 lúc 19:06

Có: \(4x^2-3xy-y^2-p\left(3x+2y\right)=2p^2\Leftrightarrow\left(4x+y\right)\left(x-y\right)-p\left(3x+2y\right)=2p^2\)\(\Leftrightarrow\left[\left(3x+2y\right)+\left(x-y\right)\right]\left(x-y\right)-p\left(3x+2y\right)=2p^2\)\(\Leftrightarrow\left(3x+2y\right)\left(x-y\right)-p\left(3x+2y\right)+\left(x-y\right)^2-p^2=p^2\)\(\Leftrightarrow\left(3x+2y\right)\left(x-y-p\right)+\left(x-y-p\right)\left(x-y+p\right)=p^2\)\(\Leftrightarrow\left(x-y-p\right)\left(4x+y+p\right)=p^2=1.p^2\)

Do \(4x+y+p>x-y-p\)nên \(\hept{\begin{cases}x-y-p=1\left(1\right)\\4x+y+p=p^2\left(2\right)\end{cases}}\)(Do p là số nguyên tố)

Lấy (1) + (2), ta được: \(5x=p^2+1\Rightarrow5x-1=p^2\)(là số chính phương, đpcm)

Khách vãng lai đã xóa
Dang Van Anh
Xem chi tiết
thientytfboys
18 tháng 4 2016 lúc 13:25

Biến đổi bt tương đương : (x^2-1)/2 =y^2 
Ta có: vì x,y là số nguyên dương nên 
+) x>y và x phải là số lẽ. 
Từ đó đặt x=2k+1 (k nguyên dương); 
Biểu thức tương đương 2*k*(k+1)=y^2 (*); 
Để ý rằng: 
Y là 1 số nguyên tố nên y^2 sẽ là 1 số nguyên dương mà nó có duy nhất 3 ước là : 
{1,y, y^2} ; 
từ (*) dễ thấy y^2 chia hết cho 2, dĩ nhiên y^2 không thể là 2, vậy chỉ có thể y=2 =>k=1; 
=>x=3. 
Vậy ta chỉ tìm được 1 cặp số nguyên tố thoả mãn bài ra là x=3 và y=2 (thoả mãn).

nguyen thi nhat anh
Xem chi tiết
Xem chi tiết
soyeon_Tiểubàng giải
1 tháng 3 2017 lúc 12:15

P(0) = a.02 + b.0 + c = m2 (m \(\in Z\))

=> P(0) = c = m2

P(1) = a.12 + b.1 + c = k2 (k \(\in Z\))

=> a + b = k2 - c = k2 - m2 là số nguyên (*)

P(2) = a.22 + b.2 + c = n2 (\(n\in Z\))

=> 4a + 2b + m2 = n2

=> 4a + 2b = n2 - m2 là số nguyên (1)

Từ (1) và (*) => 4a + 2b - 2.(a + b) nguyên

=> 2a nguyên => a nguyên

Kết hợp với (*) => b nguyên

Từ (1) => n2 - m2 chẵn (2)

=> (n - m)(n + m) chẵn

Mà n - m và n + m luôn cùng tính chẵn lẻ \(\forall m;n\in Z\)

Kết hợp với (2) \(\Rightarrow\left(n-m\right)\left(n+m\right)⋮4\)

hay n2 - m2 chia hết cho 4

Kết hợp với (1) => \(2b⋮4\)

=> b chia hết cho 2 => b chẵn

Ta có đpcm