Chứng minh rằng hiệu các bình phương của hai số lẻ bất kì thì chia hết cho 8.
Chứng minh rằng hiệu các bình phương của hai số lẻ bất kì thì chia hết cho 8
Gọi hai số lẻ đó là 2k+1 và 2k+3 (k\(\in\)Z)
Ta có:
(2k+3)\(^2\)- (2k+1)\(^2\)= (2k+3+2k+1)(2k+3-2k-1)
= (4k+4).2
=8.(k+1)
Vì 8\(⋮\)8 \(\Rightarrow\)8.(k+1) \(⋮\)8
\(\Leftrightarrow\) (2k+3)\(^2\)-(2k+1)\(^2\)\(⋮\)8 (đpcm)
Chứng minh rằng hiệu các bình phương của hai số lẻ bất kì thì chia hết cho 8
gọi 2 số lẻ bất kì lần lượt là 2a + 1 và 2a + 3
Cần chứng minh (2a + 1)2 - (2a + 3)2 chia hết cho 8
có: (2a + 1)2 - (2a + 3)2 = 4x2 + 4x + 1 - 4x2 - 12x - 9 = -8x - 8 = -8 (x + 1)
-8 (x + 1) chia hết cho 8
=> (đpcm)
Gọi 2 lẻ bất kì là a và b
Phải chứng minh a2-b2 chia hết cho 8
Do a2 và b2 là số chính phương nên chia 8 chỉ có thể dư 0;1 hoặc 4. Mà a, b lẻ nên a2 và b2 lẻ suy ra a2 và b2 chia 8 dư 1
Suy ra a2-b2 chia hết cho 8
Chứng tỏ hiệu các bình phương của 2 số lẻ bất kì thí chia hết cho 8
Trần Như: Nếu gọi 2 số lẻ bất kỳ thì ko gọi là 2a+1 và 2a+3 đc, vì đó chỉ là hai số lẻ liên tiếp thôi. :) Ta trình bày như sau:
Gọi hai số lẻ bất kì là \(2a+1\) và \(2b+1\)
Khi đó hiệu bình phương của hai số là \(A=\left(2a+1\right)^2-\left(2b+1\right)^2=4a^2+4a-4b^2-4b=4\left(a^2-b^2+a-b\right)=4\left(a-b\right)\left(a+b+1\right)\)
Ta thấy \(\left(a-b\right)\left(a+b+1\right)\) luôn chia hết cho 2 nên A luôn chia hết cho 8.
Soyeon làm như vậy cũng đc, ta sử dụng đồng dư :)
Chứng minh rằng hiệu các bình phương hai số lẻ bất kì thì chia hết cho 8
Gọi 2k+1 va 2p+1 la các số lẻ
hieu cac binh phuong cua 2 so le la`:
( 2k + 1 )^2 - ( 2p+11)^2 = ( 2k + 1+2p+1)( 2k + 1-2p-1)= ( 2k +2p+2)( 2k -2p)=4(k+p+1)(k-p)
=4(k+p+1)(k+p-2p)=4(k+p+1)(k+p)-8p(k+p...
Vì 4(k+p+1)(k+p) chia hết cho 8 và 8p(k+p+1) chia hết cho 8
Vậy ( 2k + 1 )^2 - ( 2p+11)^2 chia hết cho 8
Gọi 2 số lẻ đó lần lượt là 2k+1 và 2a+1
(2k+1)2-(2a+1)2
= 4k2+4k+1-4a2-4a-1
= 4(k2+k+a2+a)
Như vậy ta đã chứng minh được nó chia hết cho 4 giờ ta chứng minh k2+k+a2+a chia hết cho 2,
Thật vậy ta có k2+k=k(k+1) ; a2+a=a(a+1)
Do 2 số tự nhiên liên tiếp luôn chia hết cho 2 suy ra a2+a và k2+k chia hết cho 2
Suy ra a2+a+k2+k chia hết cho 2
Như vậy bài toán được chứng minh
chứng minh rằng : hiệu các bình phương 2 số lẻ bất kì chia hết cho 8
gọi 2 số lẻ đó lần lượt là: 2a + 1 và 2a + 3
cần chứng minh (2a + 1)2 - (2a + 3)2 chia hết cho 8
có: (2a + 1)2 - (2a + 3)2 = 4a2 + 4a + 1 - 4a2 - 12a - 9 = -8a - 8 = -8 (a + 1)
-8 (a + 1) chia hết cho 8
=> đpcm
bạn ơi đây là 2 số lẻ bất kì thì như vậy có đúng ko ạ
chứng minh rằng : hiệu các bình phương 2 số lẻ bất kì chia hết cho 8
Ta đã biết số chính phương chia 8 chỉ có thể dư 0; 1;4 => bình phương của 1 số lẻ chia 8 dư 1
=> hiệu các bình phương của 2 số lẻ bất kì chia hết cho 8
=> đpcm
Ủng hộ mk nha ♡_♡☆_☆
Chứng minh :Hiệu các bình phương của hai số lẻ bất kì thì chia hết cho 8
GIÚP MÌNH VỚI MAI MÌNH ĐI HỌC RỒI
Với k, l thuộc Z
Đặt A=\(\left(2k+1\right)^2-\left(2l+1\right)^2=\left(2k+1-2l-1\right)\left(2k+1+2l+1\right)\),
\(=2\left(k-l\right).2\left(k+l+1\right)=4\left(k-l\right)\left(k+l+1\right)\)
k-l là chẵn => k-l chia hết cho 2=> A chia hết cho 8
k-l là số lẻ => k+l là số lẻ => k+l+1 chẵn =>k+l+1 chia hết cho 2=> A chia hết cho 8
\(\left(2k+1\right)^2-\left(2k+3\right)^2\)
=\(\left(4k^2+4k+1\right)-\left(4k^2+12k-9\right)\)
=\(4k^2+4k+1-4k^2-12k-9\)
=\(-8k-8\)
=\(8\left(-k-1\right)⋮8\)
Vậy...........................
Mik ko biết có đúng ko nx
đúng thì k nhé
VD : 72 - 52 = 49 - 25 = 24
92 - 32 = 81 - 9 = 72
Suy ra hiệu bình phương của hai số lẻ bất kì thì chia hết cho 8
c/m rằng hiệu các bình phương của 2 số lẻ bất kì thì chia hết cho 8.
Gọi 2 số lẻ đó có dạng 2k+1 và 2q+1 ( k,q thuộc N )
Xét : (2k+1)^2-(2q+1)^2 = (2k+1-2q-1).(2k+1+2q+1) = (2k-2q).(2k+2q+2) = 4.(k-q).(k+q+1)
Ta thấy : k+q+1-(k-q) = k+q+1-k+q = 2q+1 lẻ
=> trong 2 số k+q+1 và k-q có 1 số chẵn => (k+q+1).(k-q) chia hết cho 2
=> (2k+1)^2-(2q+1)^2 chia hết cho 8
=> ĐPCM
k mk nha
Theo đề ta có hiệu ( 2a+1 )^2 - ( 2b+1 )^2
Có ( 2a+1 )^2 = 2^2a^2 + 2a + 2a - 1 = 4a^2 + 4a - 1 = 4a( a - 1 ) - 1
Có ( 2b+1 )^2 = 2^2b^2 + 2b + 2b - 1 = 4b^2 + 4b - 1 = 4b( b - 1 ) - 1
Vậy giờ ta được đa thức [ 4a( a - 1 ) - 1 ] - [ 4b( b - 1 ) - 1 ]
Có a( a - 1 ) và b( b - 1 ) là tích của hai số tự nhiên liên tiếp => chúng chia hết cho 2
Thế a( a - 1 ) = 2x ; b( b - 1 ) = 2y
Ta được ( 4.2y - 1 ) - ( 4.2x - 1 ) = ( 8y - 1 ) - ( 8x - 1 ) = 8y - 1 - 8x + 1 = 8y - 8x = 8( y - x )
=> Hiệu của bình phương hai số lẻ bất kì luôn chia hết cho 8
Bài 1: Phân tích đa thức thành nhân tử: \(a^2-b^2-4ab+4.\)
Bài 2: Chứng minh rằng hiệu các bình phương của hai số lẻ bất kì thì chia hết cho 8.
GIẢI GIÚP MK NHA! THANKS M.N!!! ^O^
bài 1 : \(a^2-b^2-4ab+4\)
\(=\left(a-b\right)\left(a+b\right)-4\left(ab-1\right)\)
hiệu các bình phương của hai số lẻ bất kì thì chia hết cho 8
GIÚP VỚI MAI MÌNH ĐI HỌC RỒI
Gọi hai số lẻ bất kì là 2a + 1 và 2b + 1 (a, b ∈ Z)
Hiệu bình phương của hai số lẻ đó bằng :
\({\left( {2a{\rm{ }} + {\rm{ }}1} \right)^2}-{\rm{ }}{\left( {2b{\rm{ }} + {\rm{ }}1} \right)^2} = \left( {4{a^2} + {\rm{ }}4a{\rm{ }} + {\rm{ }}1} \right){\rm{ }}-{\rm{ }}\left( {4{b^2} + {\rm{ }}4b{\rm{ }} + 1} \right)\)
\(= \left( {4{a^2} + {\rm{ }}4a} \right){\rm{ }}-{\rm{ }}\left( {4{b^2} + {\rm{ }}4b} \right){\rm{ }} = {\rm{ }}4a\left( {a{\rm{ }} + 1} \right){\rm{ }}-{\rm{ }}4b\left( {b{\rm{ }} + {\rm{ }}1} \right)\)
Vì tích của hai số nguyên liên tiếp luôn chia hết cho 2 nên a(a+1) và b(b+1) chia hết cho 2.
Do đó 4a(a + 1) và 4b(b + 1) chia hết cho 8
4a(a + 1) – 4b(b + 1) chia hết cho 8.
Vậy \({\left( {2a{\rm{ }} + {\rm{ }}1} \right)^2}-{\rm{ }}{\left( {2b{\rm{ }} + {\rm{ }}1} \right)^2}\) chia hết cho 8.
Gọi hai số lẻ bất kì là \(2a+1\) và \(2b+1\)
Khi đó hiệu bình phương của hai số là \(A=\left(2a+1\right)^2-\left(2b+1\right)^2=4a^2+4a-4b^2-4b=4\left(a^2-b^2+a-b\right)=4\left(a-b\right)\left(a+b+1\right)\)
Ta thấy \(\left(a-b\right)\left(a+b+1\right)\) luôn chia hết cho 2 nên A luôn chia hết cho 8.
Gọi 2 số lẻ bất kì là 2n+1; 2m+1 (n, m thuộc N)
Ta có: (2n+1)^2-(2m+1)^2
=4n^2+4n+1-4m^2-4m-1
=4(n^2+n-m^2-m)
= 4[(n^2-m^2)+(n-m)]
= 4[(n-m)(n+m)+(n-m)]
= 4(n-m)(n+m+1)
+ nếu n, m cùng chẵn hoặc cùng lẻ thì (n-m) chẵn:2 nên hiệu hai bp: 8
+ nếu n, m lẻ và chẵn(hoặc ngược lại) thì (n+m+1) chẵn:2 nên hiệu hai bp:8