Hàm số y = 4 - x - x + 6 đạt giá trị nhỏ nhất tại x = x0. Tìm x0
A. x0 = -6
B. x0 = -1
C. x0 = 0
D. x0 = 4
Giá trị nhỏ nhất của hàm số y = 6 - x - x + 4 đạt tại x0, tìm x0?
A. x0 = -√10
B. x0 = -4
C. x0 = 6
D. x0 = √10
Giá trị nhỏ nhất của hàm số y = 2 x 3 + 3 x 2 − 12 x + 2 trên đoạn [ − 1 ; 2 ] đạt tại x = x 0 . Giá trị x 0 bằng bao nhiêu?
A. 2
B. 1
C. - 2
D. - 1
Cho hàm số y=f(x) có đạo hàm trên đoạn [a;b]. Ta xét các khẳng định sau:
1) Nếu hàm số f(x) đạt cực đại tại điểm x 0 ∈ a ; b thì f x o là giá trị lớn nhất của f(x) trên đoạn [a;b]
2) Nếu hàm số f(x) đạt cực đại tại điểm x 0 ∈ a ; b thì f x o là giá trị nhỏ nhất của f(x) trên đoạn [a,b]
3) Nếu hàm số f(x) đạt cực đại tại điểm x 0 và đạt cực tiểu tại điểm x 1 x 0 , x 1 ∈ a ; b thì ta luôn có f x 0 > f x 1
Số khẳng định đúng là?
A. 1
B. 2
C. 0
D. 3
Đáp án A
Hàm số f(x) xác định trên D⊆ R
Điểm
x
0
∈ D được gọi là điểm cực đại của hàm số f(x) nếu tồn tại một khoảng (a;b)⊂ D sao cho
x
0
∈ (a;b) và f(
x
0
)>f(x),∀x ∈ (a,b)∖{
x
0
}.
Cho hàm số y=f(x)có đạo hàm trên đoạn [a,b]. Ta xét các khẳng định sau:
1) Nếu hàm số f(x) đạt cực đại tại điểm x 0 ∈ a ; b thì f x o là giá trị lớn nhất của f(x) trên đoạn[a,b]
2) Nếu hàm số f(x) đạt cực đại tại điểm x 0 ∈ a ; b thì f x o là giá trị nhỏ nhất của f(x) trên đoạn [a,b]
3) Nếu hàm số f(x) đạt cực đại tại điểm x 0 và đạt cực tiểu tại điểm x 1 x 0 , x 1 ∈ a ; b thì ta luôn có f x 0 > f x 1
Số khẳng định đúng là?
A. 1
B. 2
C. 0
D. 3
Đáp án A
Hàm số f(x) xác định trên D⊆ R
Điểm xo∈ D được gọi là điểm cực đại của hàm số f(x) nếu tồn tại một khoảng (a;b)⊂ D sao cho xo∈ (a;b) và f(xo)>f(x),∀x ∈ (a,b)∖{xo}.
Giá trị nhỏ nhất của hàm số y = 2 x 3 + 3 x 2 − 12 x + 2 trên đoạn − 1 ; 2 đạt giá trị x − x 0 . Gía trị x 0 bằng
A. 1
B. 2
C. -2
D. -1
Đáp án là A .
Ta có:
• y ' = 6 x 2 + 6 x − 12 , cho y ' = 0 ⇔ x = − 2 ∉ − 1 ; 2 x = 1 ∈ − 1 ; 2 .
• y − 1 = 15 ; y 2 = 6 ; y 1 = − 5.
Vậy x 0 = 1.
Giá trị nhỏ nhất của hàm số y = 2 x 3 + 3 x 2 − 12 x + 2 trên đoạn − 1 ; 2 đạt giá trị x − x 0 . Gía trị x 0 bằng
A. a 3 2 4
B. a 3 3 8
C. a 3 2 8
D. a 3 3 4
Đáp án là B
Đáy hình thoi cạnh a, góc B C A ^ = 30 0 ⇒ B C D ^ = 60 0
Nên suy ra B D = a , A C = 2. O C = 2. a 3 2 = a 3
Vậy diện tích đáy d t A B C D = 1 2 A C . B D = 1 2 . a 3 . a = a 2 3 2
Vậy thể tích V = 1 3 S O . d t A B C D = a 3 3 8
Cho các mệnh đề :
1) Hàm số y=f(x) có đạo hàm tại điểm x 0 thì nó liến tục tại x 0 .
2) Hàm số y=f(x) liên tục tại x 0 thì nó có đạo hàm tại điểm x 0 .
3) Hàm số y=f(x) liên tục trên đoạn [a;b] và f(a).f(b)<0 thì phương trình f(x) có ít nhất một nghiệm trên khoảng (a;b).
4) Hàm số y=f(x) xác định trên đoạn [a;b] thì luôn tồn tại giá trị lớn nhất và giá trị nhỏ nhất trên đoạn đó.
Số mệnh đề đúng là:
A. 2
B. 4
C. 3
D. 1
Biết rằng hàm số f ( x ) = x 3 - 3 x 2 - 9 x + 28 đạt giá trị nhỏ nhất trên đoạn [0;4] tại x 0 .Tính P = x 0 + 2018
A. P = 2021
B. P = 2018
C. P = 2019
D. P = 3
Cho hàm số y = f x có đạo hàm trên đoạn a ; b . Ta xét các khẳng định sau:
(1) Nếu hàm số f x đạt cực đại tại điểm x 0 ∈ a ; b thì f x 0 là giá trị lớn nhất của f x trên đoạn a ; b .
(2) Nếu hàm số f x đạt cực đại tại điểm x 0 ∈ a ; b thì f x 0 là giá trị nhỏ nhất của f x trên đoạn a ; b
(3) Nếu hàm số f x đạt cực đại tại điểm x 0 và đạt cực tiểu tại điểm x 1 ( x 0 , x 1 ∈ a ; b ) thì ta luôn có f x 0 > f x 1 .
Số khẳng định đúng là?
A. 1
B. 2
C. 0
D. 3