so sánh : A=$\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{100}}$1√1 +1√2 +...+1√100 với 10. Trình bày cách giải nha bạn
so sánh $\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{100}}$ với 10. Trình bày cách giải nha bạn
so sánh A= \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{100}}\) với 10.
Trình bày cách giải nha bạn.
1/√1 > 1/10
1/√2 > 1/10
1/√3 > 1/10
....
1/√100 = 1/10
Cộng vế lại ta có : 1/√1+ 1/√2 + 1/√3 ..... + 1/√100 > 100 . 1/10
Mà 100.1/10 = 10
Suy ra 1/√1+ 1/√2 + 1/√3 ..... + 1/√100 = 10
So sánh
A=\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+.......+\frac{1}{\sqrt{100}}\) và 10
Giải chi tiết giùm nha Cảm ơn trước nhiều
\(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{10}};\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{10}};...;\frac{1}{\sqrt{99}}>\frac{1}{\sqrt{100}};\frac{1}{\sqrt{100}}=\frac{1}{\sqrt{100}}\)
\(\Rightarrow A>\frac{100.1}{\sqrt{100}}=\frac{100}{10}=10\)
Vậy A > 10
ta có \(\frac{1}{\sqrt{1}}>\frac{1}{10}\)
\(\frac{1}{\sqrt{2}}>\frac{1}{10}\)
..............................
\(\frac{1}{\sqrt{99}}>\frac{1}{10}\)
\(\frac{1}{\sqrt{100}}=\frac{1}{10}\)
\(\Rightarrow\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}>\frac{1}{10}+\frac{1}{10}+...+\frac{1}{10}\)(có 100 số 1/10)
\(\Rightarrow A>\frac{100}{10}=10\)
Cho A = \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}\)
So sánh A với 10.
So sánh A với 10 biết\(A=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}\)
A=\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+..................................................+\frac{1}{\sqrt{100}}\)
Hãy so sánh A với 10
A > 10
Tik cho mk nha..........cảm ơn rất nhiều
so sánh : A=\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{100}}\)với 10
làm ơn làm phước tick cho mình lên 210 điểm hỏi đáp đi
Cho \(M=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}.\)So sánh M với 10
\(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{10}};\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{10}};...;\frac{1}{\sqrt{9}}>\frac{1}{\sqrt{10}};\frac{1}{\sqrt{10}}=\frac{1}{\sqrt{10}}\)
=>M>10
So sánh \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}...+\frac{1}{\sqrt{100}}\) và 10
Ta có: \(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{100}}\)
\(\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}}\)
\(\frac{1}{\sqrt{3}}>\frac{1}{\sqrt{100}}\)
..........
..........
..........
\(\frac{1}{\sqrt{100}}=\frac{1}{\sqrt{100}}\)
\(\Rightarrow\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}.100=\frac{100}{10}=10\)
Vậy \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}>10\)