Chứng minh rằng với n không chia hết cho 3 thì32n+3n+1 chia hết cho 13
chứng minh rằng số A(n) = 2^3n +1 chia hết cho 3^(n+1) nhưng không chia hết cho 3^(n+2chứng minh rằng số A(n) = 2^3^n +1 chia hết cho 3^(n+1) nhưng không chia hết cho 3^(n+2)
Chứng minh rằng với n không chia hết cho 3 thì 3^(2n)+3^n+1 chia hết cho 13
Đây
Ta có: \(3^{2n}+3^n+1\)
Vì n không chia hết cho 3 nên: n có dạng là \(3k+1\)
Thế vào: Ta có: \(3^{6k+2}+3^{3k+1}+1\)
\(=729^k\cdot9+27^k\cdot3+1\)
Mặt khác: \(729\equiv27\equiv1\)(mod 13)
Do đó: \(729^k\cdot9+27^k\cdot3+1\equiv1\cdot9+1\cdot3+1=13\)(mod 13)
Vậy .............
P/s: Xét luôn trường hợp \(n=3k+2\)với cách làm tương tự trên
Bài 1: Chứng minh rằng 2002n -138n-1 chia hết cho 207 với mọi số tự nhiên n
Bài 2: Cho số tự nhiên n và n-1 không chia hết cho 4. CHứng minh rằng 7n + 2 không thể là số chính phương
Bài 3: Chứng minh rằng dãy 2n - 3 ( n>1) có vô số số hạng chia hết cho 5 và vô số số hạng chia hết cho 13 nhưng không có số hạng nào chia hết cho 65.
1. Chứng minh rằng:
a. 2^51 - 1 chia hết cho 7
b. 2^70 + 3^70 chia hết cho 13
c. 17^19 + 19^17 chia hết cho 18
d. 36^63 - 1 chia hết cho 7 nhưng không chia hết cho 37
e. 2^4n - 1 chia hết cho 15 với n thuộc N
2. Chứng minh rằng:
a. n^5 - n chia hết cho 30 với n thuộc N
b. n^4 - 10n^2 + 9 chia hết cho 384 với mọi n lẻ n thuộc Z
c. 10^n + 18n - 28 chia hết cho 27 với n thuộc N
3. Chứng minh rằng:
a. a^5 - a chia hết cho 5
b. n^3 + 6n^2 + 8n chia hết cho 48 với mọi n chẵn
c. Cho a là số nguyên tố lớn hơn 3. Chứng minh: a^2 - 1 chia hết cho 24
d. 2009^2010 không chia hết cho 2010
e. n^2 + 7n + 22 không chia hết cho 9
1)
a)251-1
=(23)17-1\(⋮\)23-1=7
Vậy 251-1\(⋮\)7
b)270+370
=(22)35+(32)35\(⋮\)22+32=13
Vậy 270+370\(⋮\)13
c)1719+1917
=(BS18-1)19+(BS18+1)17
=BS18-1+BS18+1
=BS18\(⋮\)18
d)3663-1\(⋮\)35\(⋮\)7
Vậy 3663-1\(⋮\)7
3663-1
=3663+1-2
=BS37-2\(⋮̸\)37
Vậy 3663-1\(⋮̸\)37
e)24n-1
=(24)n-1\(⋮\)24-1=15
Vậy 24n-1\(⋮\)15
1. Chứng minh rằng:
a. 2^51 - 1 chia hết cho 7
b. 2^70 + 3^70 chia hết cho 13
c. 17^19 + 19^17 chia hết cho 18
d. 36^63 - 1 chia hết cho 7 nhưng không chia hết cho 37
e. 2^4n - 1 chia hết cho 15 với n thuộc N
2. Chứng minh rằng:
a. n^5 - n chia hết cho 30 với n thuộc N
b. n^4 - 10n^2 + 9 chia hết cho 384 với mọi n lẻ n thuộc Z
c. 10^n + 18n - 28 chia hết cho 27 với n thuộc N
3. Chứng minh rằng:
a. a^5 - a chia hết cho 5
b. n^3 + 6n^2 + 8n chia hết cho 48 với mọi n chẵn
c. Cho a là số nguyên tố lớn hơn 3. Chứng minh: a^2 - 1 chia hết cho 24
d. 2009^2010 không chia hết cho 2010
e. n^2 + 7n + 22 không chia hết cho 9
Chứng minh rằng:
a,n+5 chia hết cho n+2
b,2n+1 chia hết cho n-5
c,\(n^2\)+3n-13 chia hết cho n+3
d,\(n^2\)+3 chia hết cho n-1
Đề bài là tìm n chứ:
a) Ta có:
\(n+5⋮n+2\)
\(\Rightarrow\left(n+2\right)+3⋮n+2\)
\(\Rightarrow3⋮n+2\)
\(\Rightarrow n+2\in U\left(3\right)=\left\{-1;1;-3;3\right\}\)
\(\Rightarrow\left\{{}\begin{matrix}n+2=-1\Rightarrow n=-3\\n+2=1\Rightarrow n=-1\\n+2=-3\Rightarrow n=-5\\n+2=3\Rightarrow n=1\end{matrix}\right.\)
Vậy \(n\in\left\{-3;-1;-5;1\right\}\)
b) Ta có:
\(2n+1⋮n-5\)
\(\Rightarrow\left(2n-10\right)+11⋮n-5\)
\(\Rightarrow2\left(n-5\right)+11⋮n-5\)
\(\Rightarrow11⋮n-5\)
\(\Rightarrow n-5\in U\left(11\right)=\left\{-1;1;-11;11\right\}\)
\(\Rightarrow\left\{{}\begin{matrix}n-5=-1\Rightarrow n=4\\n-5=1\Rightarrow n=6\\n-5=-11\Rightarrow n=-6\\n-5=11\Rightarrow n=16\end{matrix}\right.\)
Vậy \(n\in\left\{4;6;-6;16\right\}\)
c) Ta có:
\(n^2+3n-13⋮n+3\)
\(\Rightarrow n\left(n+3\right)-13⋮n+3\)
\(\Rightarrow-13⋮n+3\)
\(\Rightarrow n+3\in U\left(13\right)=\left\{-1;1;-13;13\right\}\)
\(\Rightarrow\left\{{}\begin{matrix}n+3=-1\Rightarrow n=-4\\n+3=1\Rightarrow n=-2\\n+3=-13\Rightarrow n=-16\\n+3=13\Rightarrow n=10\end{matrix}\right.\)
Vậy \(n\in\left\{-4;-2;-16;10\right\}\)
biết rằng số tự nhiên khác không n không chia hết cho 3. hãy chứng minh rằng: 3^2n +3^n+1 chia hết cho 13
Chứng minh rằng:
a) n^3 + 3n^2+ 2n chia hết cho 6 với mọi số nguyên n
b)9n+1 không chia hết cho 100
c) n^2 +n+2 ko chia hết cho 15
1/ Chứng minh rằng với mọi n thuộc N thì 50n + 25 chia hết cho 25 nhưng ko chia hết cho 50
2/ Chứng minh rằng 5 số chẵn liên tiếp thì chia hết cho 10
3/ Tìm n thuộc N
n + 3 chia hết cho n
3n + 3 chia hết cho n
27 - 5n chia hết cho n