Trong không gian Oxyz cho hai đường thẳng có phương trình x = 1 + 2 t y = − 1 − t z = 1 và x = 2 − t y = − 2 − t z = 3 + t .Tìm khoảng cách giừa hai đường thẳng
A. 6
B. 3 6
C. 6 2
D. 3 6 2
Trong không gian Oxyz cho hai đường thẳng có phương trình x = 1 + 2 t y = − 1 − t z = 1 và x = 2 − t y = − 2 − t z = 3 + t .Tìm khoảng cách giừa hai đường thẳng.
A. 6
B. 3 6
C. 6 2
D. 3 6 2
Đáp án C
Đường thẳng Δ : x = 1 + 2 t y = − 1 − t z = 1 đi qua điểm A 1 ; − 1 ; 1 và có vtcp u → = 2 ; − 1 ; 0
Đường thẳng Δ ' : x = 2 − t y = − 2 + t z = 3 + t đi qua điểm B 2 ; − 2 ; 3 và có vtcp u ' → = − 1 ; 1 ; 1
Vậy d Δ , Δ ' = u → , u ' → . A B → u → , u ' →
u → , u ' → = − 1 ; − 2 ; 1 ⇒ u → , u ' → = 6 ; A B → = 1 ; − 1 ; 2 ⇒ d Δ , Δ ' = 3 6 = 6 2
Trong không gian Oxyz, cho mặt phẳng Oxyz và hai đường thẳng d 1 : x + 1 - 1 = y - 6 2 = z 1 và d 2 : x - 1 - 3 = y - 2 - 1 = z + 4 4 Đường thẳng vuông góc với (P) và cắt cả hai đường thẳng d 1 và d 2 có phương trình là
Trong không gian Oxyz, cho mặt phẳng ( α ) có phương trình d 1 : x = 1 + 3 t y = 4 + t z = - 1 + 2 t , d 2 : x - 2 - 3 = y 2 = z - 4 - 2 .Phương trình đường thẳng ∆ nằm trong mặt phẳng ( α ) , cắt cả hai đường thẳng d 1 , d 2 là
A. x + 2 8 = y - 1 - 7 = z + 3 1
B. x - 2 - 8 = y + 1 7 = z - 3 - 1
C. x + 2 8 = y - 1 7 = z + 3 - 1
D. x - 2 - 8 = y 7 = z - 3 1
Trong không gian với hệ trục tọa độ Oxyz, cho hai đường thẳng d 1 , d 2 lần lượt có phương trình d 1 : x - 2 2 = y - 2 1 = z - 3 3 ; d 2 : x - 1 2 = y - 2 - 1 = z - 1 4 . Mặt phẳng cách đều hai đường thẳng có phương trình là
A. 14 x - 4 y - 8 z + 1 = 0
B. 14 x - 4 y - 8 z + 3 = 0
C. 14 x - 4 y - 8 z - 3 = 0
D. 14 x - 4 y - 8 z - 1 = 0
Trong không gian tọa độ Oxyz cho đường thẳng d1 và d2 lần lượt có phương trình x = 9 + 2 t y = - 1 - t z = 3 - t v à x = 1 - 2 t ' y = 4 + t ' z = 2 + t ' và Viết phương trình mặt phẳng chứa cả hai đường thẳng d1 và d2
Trong không gian tọa độ Oxyz cho đường thẳng d 1 và d 2 lần lượt có phương trình x = 9 + 2 t y = - 1 - t z = 3 - t và x = 1 - 2 t ' y = 4 + t ' z = 2 + t ' Viết phương trình mặt phẳng chứa cả hai đường thẳng d 1 và d 2
Trong không gian với hệt tọa độ Oxyz, cho hai đường thẳng d 1 , d 2 lần lượt có phương trình d 1 : x − 2 2 = y − 2 1 = z − 3 3 , d 2 : x − 1 2 = y + 2 − 1 = z + 1 4 . Viết phương trình mặt phẳng cách đều hai đường thẳng d 1 và d 2 .
A. − 7 x + 2 y − 4 z + 13 2 = 0
B. − 7 x + 2 y − 4 z - 17 2 = 0
C. 7 x - 2 y − 4 z - 13 2 = 0
D. 7 x - 2 y − 4 z - 17 2 = 0
Trong không gian với hệ toạ độ Oxyz,cho hai đường thẳng d 1 ; d 2 lần lượt có phương trình d 1 : x - 2 2 = y - 2 1 = z - 3 3 , d 2 : x - 1 2 = y - 2 - 1 = z - 1 4 . Phương trình mặt phẳng (α) cách đều hai đường thẳng d 1 ; d 2 là
A. 2x+y+3z+3=0.
B. 14x-4y-8z+3=0.
C. 7x-2y-4z=0.
D. 7x-2y-4z+3=0.
Trong không gian với hệ toạ độ Oxyz, cho hai đường thẳng d 1 , d 2 lần lượt có phương trình d 1 : x - 2 2 = y - 2 1 = z - 3 3 , d 2 : x - 1 2 = y - 2 - 1 = z - 1 4 . Phương trình mặt phẳng (P) cách đều hai đường thẳng d1;d2 là:
A. 7x – 2y - 4z = 0.
B. 7x – 2y - 4z + 3 = 0.
C. 2x+ y + 3z + 3 = 0
D. 14x – 4y – 8z + 3 = 0
Chọn D.
Ta có d1 đi qua A(2;2;3) và có
Do (P) cách đều d1;d2 nên (P) song song với d 1 , d 2
(P) có dạng 7x – 2y – 4z + d = 0
Vì (P) cách đều hai đường thẳng nên: d(A;(P)) = d(B;(P))