C=\(\left(1+\frac{1}{2}\right)x\left(1+\frac{1}{3}\right)x\left(1+\frac{1}{4}\right)x......x\left(1+\frac{1}{2015}\right)\)
\(A=\left(6:\frac{3}{5}-1\frac{1}{6}x\frac{6}{7}\right):\left(4\frac{1}{5}x\frac{10}{11}+5\frac{2}{11}\right)\)\(B=\left(1-\frac{1}{2}\right)x\left(1-\frac{1}{4}\right)x.......x\left(1-\frac{1}{2015}\right)x\left(1-\frac{1}{2016}\right)\)
\(C=5\frac{9}{10}:\frac{3}{2}-\left(2\frac{1}{3}x4\frac{1}{2}-2x2\frac{1}{3}\right):\frac{7}{4}\)
Tìm x biết\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+...+\frac{1}{\left(x+2015\right)\left(x+2016\right)}=\frac{1}{x+2016}\)
\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+\right)\left(x+3\right)}+...+\frac{1}{\left(x+2015\right)\left(x+2016\right)}=\frac{1}{x+2016}\)
\(\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+...+\frac{1}{x+2015}-\frac{1}{x+2016}=\frac{1}{x+2016}\)
\(\frac{1}{x}-\frac{1}{x+2016}=\frac{1}{x+2016}\)
\(\frac{1}{x}-\frac{1}{x+2016}-\frac{1}{x+2016}=0\)
\(\frac{1}{x}-\frac{2x}{x+2016}=0\)
\(\frac{x+2016}{x\left(x+2016\right)}-\frac{2x}{x\left(x+2016\right)}=0\)
\(\frac{x+2016-2x}{x\left(x+2016\right)}=0\Leftrightarrow2016-x=0\Leftrightarrow x=2016\)
Tính:
\(\frac{1}{x.\left(x+1\right)}+\frac{1}{\left(x+1\right).\left(x+2\right)}+\frac{1}{\left(x+2\right).\left(x+3\right)}+\frac{1}{\left(x+3\right).\left(x+4\right)}+\frac{1}{\left(x+4\right).\left(x+5\right)}+\frac{1}{x+5}\)
\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{x+5}\)
\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}\)
\(=\frac{1}{x}\)
ta có: \(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{x+5}\)
=\(\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}\)
= \(\frac{1}{x}\)
Giải phương trình:
1,\(\left(x^2-x+1\right)^4+5x^4=6\left(x^2-x+1\right)^4\)
2,\(\frac{x+4}{x-1}+\frac{x-4}{x+1}=\frac{x-8}{x+2}+\frac{x+8}{x-2}+\frac{8}{3}\)
3,\(\left|x-2015\right|^{2015}+\left|x-2016\right|^{2016}=1\)
4,\(\frac{5}{2x-3}-\frac{1}{x+2}=\frac{5}{x-6}-\frac{7}{2x-1}\)
5,\(\left(x+2008\right)^4+\left(x+2009\right)^4=\frac{1}{8}\)
tớ ko bt lm abc , tớ lm d thôi nha , thứ lỗi
\(\frac{5}{2x-3}-\frac{1}{x+2}=\frac{5}{x-6}-\frac{7}{2x-1}\)
\(\frac{3x+13}{2x^2+x-6}=\frac{5}{x-6}+\frac{7}{1-2x}\)
\(\frac{3x+13}{\left(x+2\right)\left(2x-3\right)}=\frac{3x+37}{\left(x-6\right)\left(2x-1\right)}\)
\(\frac{10-9x}{-4x^3+32x^2-51x+18}=0\)
\(\Rightarrow\orbr{\begin{cases}x=-3\\x=\frac{10}{9}\end{cases}}\)
\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}=\frac{1}{3}\)
1/x(x+1)+1/(x+1)(x+2)+1/(x+2)(x+3)+1/(x+3)(x+4)=1/3
<=>1/x-1/x+1+1/x+1-1/x+2+1/x+2-1/x+3+1/x+3-1/x+4=1/3
<=>1/x-1/x+4=1/3
<=>x+4/x(x+4)-x/x(x+4) ( quy dong mau ) =1/3
<=>4/x(x+4)=1/3
<=> 4.3=x(x+4) ( nhan cheo )
<=> x(x+4)=12
<=> x^2+4x-12=0
<=>x^2-2x+6x-12=0
<=>x(x-2) + 6(x-2) =0
<=> (x-2)(x+6)=0
<=> x-2 =0 hoac x +6=0
<=>x=2 hoac x= -6
Vay x thuoc ( 2,-6 )
K mk nha !!
\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x\text{+}2\right)}\text{+}\frac{1}{\left(x\text{+}2\right)\left(x\text{+}3\right)}+\frac{1}{\left(x\text{+}3\right)\left(x\text{+}4\right)}=\frac{1}{3}\)
\(\Rightarrow\frac{1}{x}-\frac{1}{x\text{+}1}\text{+}\frac{1}{x\text{+}1}-\frac{1}{x\text{+}2}\text{+}.....\text{+}\frac{1}{x\text{+}3}-\frac{1}{x\text{+}4}=\frac{1}{3}\)
\(\Rightarrow\)\(\frac{1}{x}-\frac{1}{x\text{+}4}=\frac{1}{3}\)
\(\Rightarrow\frac{x\text{+}4}{x\left(x\text{+}4\right)}-\frac{x}{x\left(x\text{+}4\right)}=\frac{1}{3}\)
\(\Rightarrow\frac{4}{x\left(x\text{+}4\right)}=\frac{1}{3}\)
\(\Rightarrow\frac{4}{x\left(x\text{+}4\right)}=\frac{4}{12}\)
\(\Rightarrow x\left(x\text{+}4\right)=12\)
mà x và x+4 cách nhau 4 đơn vị \(\Rightarrow x=2\)và x+4\(=\)6
Vậy \(x=2\)
Tính nhanh tổng sau:
\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}=\)
quá dễ tách ra thành 1\x-1\x+1+1\x+1-1\x+2+1\x+2-1\x+3+1\x+3-1\x+4+...+1\x+5-1\x+6
=1\x-1\x+6
=6\x(x+6)
\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}\)\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}\)
\(=\frac{1}{x}-\frac{1}{x+6}\)\(=\frac{6}{x\left(x+6\right)}\)
a) Chứng minh: \(\frac{1}{x}-\frac{1}{x+1}=\frac{1}{x\left(x+1\right)}\)
b). Tính nhẩm tổng sau: \(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{x+5}\)
Giải PT
\(\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}=\frac{1}{x+1}-403\)
ĐK: \(x\in R\backslash\left\{-4,-3,-2,-1\right\}\)
PT ban đầu
\(\Leftrightarrow\frac{x+2-x-1}{\left(x+1\right)\left(x+2\right)}+\frac{x+3-x-2}{\left(x+2\right)\left(x+3\right)}+\frac{x+4-x-3}{\left(x+3\right)\left(x+4\right)}+\frac{x+5-x-4}{\left(x+4\right)\left(x+5\right)}=\frac{1}{x+1}-403\\ \Leftrightarrow\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}=\frac{1}{x+1}-403\\ \Leftrightarrow\frac{1}{x+5}=403\\ \Leftrightarrow x+5=\frac{1}{403}\Leftrightarrow x=\frac{-2014}{403}\)
Chúc bạn học tốt nha.
Tính :
\(\left(1-\frac{1}{2}\right)x\left(1-\frac{1}{3}\right)x\left(1-\frac{1}{4}\right)x.......x\left(1-\frac{1}{2014}\right)x\left(1-\frac{1}{2015}\right)\)
Trả lời đầy đủ .Dấu x là dấy nhân.Đầy đủ sẽ được tick nhanh nhá
=\(\frac{1}{2}x\frac{2}{3}x\frac{3}{4}x...x\frac{2013}{2014}x\frac{2014}{2015}\)
=\(\frac{1x2x3x...x2013x2014}{2x3x4x...x2014x2015}\)
=\(\frac{1}{2015}\)
( Dau x la dau nhan)