cho A = 12011 +22011+...+992011+1002011 va B= 1+2+...+99+100. Chứng minh A chia hết cho B
Cho A=1^2011+2^2011+3^2011+...99^2011+100^2011 và B=1+2+3+...+99+100.Chứng minh rằng A chia hết cho B
cho A = 1/1*2+1/3*4+...+1/99*100 và B= 2015/51+2015/52+2015/53+...+2015/100. Chứng minh rằng B chia hết cho A
Cho phân số a/b thỏa mãn a/b=1+1/2+1/3+1/99+1/100.
Chứng minh rằng: a chia hết cho 101.
\(\frac{a}{b}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{99}+\frac{1}{100}\)
\(\frac{a}{b}=\frac{59400+29700+19800+600+594}{59400}\)
\(\frac{a}{b}=\frac{110094}{59400}\)
\(\frac{a}{b}=\frac{18349}{9900}\)
\(\Rightarrow a=18349\)
Mà \(18349:101=181dư68\)
Vậy đề sai
cho A = 1/1*2+1/3*4+...+1/99*100 và B= 2015/51+2015/52+2015/53+...+2015/100. Chứng minh rằng B chia hết cho A
Ta có : \(A=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}\right)-\left(1+\frac{1}{2}+...+\frac{1}{50}\right)\)
\(=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)
\(B=\frac{2015}{51}+\frac{2015}{52}+...+\frac{2015}{100}\)
\(=2015\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\right)\)
\(\Rightarrow\) \(\frac{B}{A}=\frac{2015\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\right)}{\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}}=2015\)
\(\Rightarrow\) \(B⋮A\)
cho A = 1/1*2+1/3*4+...+1/99*100 và B= 2015/51+2015/52+2015/53+...+2015/100. Chứng minh rằng B chia hết cho A
chứng minh rằng:
a,20^15-1 chia hết cho 11.31.61
b,2^9+2^99 chia hết cho 100
c,2^70+3^70 chia hết cho 13
Cho A=13+23+33+...+993+1003
B=1+2+3+...+99+100
Chứng minh rằng A chia hết cho B
Cho A=13+23+33+...+993+1003
B=1+2+3+...+99+100
Chứng minh rằng A chia hết cho B
ta có 1^3 +2^3+3^3+...+100^3=(1+2+3+4+...+100)^2 \(\Rightarrow\) A chia hết cho B (sách toán 6 tập 1 có đấy)
Tick mk nhé
Ta có: B = (1 + 100) + (2 + 99) + ...+ (50 + 51) = 101. 50
Để chứng minh A chia hết cho B ta chứng minh A chia hết cho 50 và 101
Ta có: A = (13 + 1003) + (23 + 993) + ... +(503 + 513)
= (1 + 100)(12 + 100 + 1002) + (2 + 99)(22 + 2.99 + 992) + ... + (50 + 51)(502 + 50. 51 + 512) = 101(12 + 100 + 1002 + 22 + 2. 99 + 992 + ... + 502 + 50. 51 + 512) chia hết cho 101 (1)
Lại có: A = (13 + 993) + (23 + 983) + ... + (503 + 513)
Mỗi số hạng trong ngoặc đều chia hết cho 50 nên A chia hết cho 50 (2)
Từ (1) và (2) suy ra A chia hết cho 101 và 50 nên A chia hết cho B
a) Chứng minh: A=5+52+53 chia hết cho 31
b) Chứng minh: B=5+52+53+54+...+599 chia hết cho 31
c) tìm số dư của C=1+5+52+...+599+5100 chia hết cho 31