tìm \(n\in N:\left(n+5\right)\left(n+6\right)chia\)hết cho 6n
Mấy thánh cứ chém nhiệt tình vào nha.
Tìm \(n\in Z\) sao cho \(\left(n+5\right)\left(n+6\right)\) chia hết cho \(6n\)
Ta có:
\(S=\left(n+5\right)\left(n+6\right)=n^2+11n+30=n^2-n+30+12n\)
Do \(12n\) chia hết cho \(6n\) nên để \(S\) có thể chia hết cho \(6n\) thì \(n^2-n+30\) phải chia hết cho \(6n\)
\(\Leftrightarrow\) \(n\left(n-1\right)\) chia hết cho \(3\) \(\left(1\right)\) và \(30\) chia hết cho \(n\) \(\left(2\right)\)
Từ \(\left(1\right)\) \(\Rightarrow\) \(n=3k\) hoặc \(n=3k+1\) \(\left(k\in Z\right)\)
Từ \(\left(2\right)\) \(\Rightarrow\) \(n\inƯ\left(30\right)=\left\{1;2;3;5;6;10;15;30;-1;-2;-3;-5;-6;-10;-15;-30\right\}\)
Khi đó, để thỏa mãn đồng thời \(\left(1\right)\) và \(\left(2\right)\) thì .......................
Tìm \(n\in N\)sao cho :
a) 15 - 4n chia hết cho n
b) ( 6n - 9 ) chia hết cho n \(\left(n\ge2\right)\)
c) ( n + 13 ) chia hết cho ( n - 5 )
d) ( 15 - 2n ) chia hết cho n + 1 \(\left(n\le7\right)\)
Tìm n là số tự nhiên để: \(A=\left(n+5\right)\cdot\left(n+6\right)\)Chia hết cho 6n
CMR: với mọi số tự nhiên n thì:
a)\(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\) chia hết cho 5
b)\(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\)chia hết cho 2
a, Ta có: \(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)
\(=n^3+3n^2-n+2n^2+6n-2-n^3+2\)
\(=5n^2+5n=5\left(n^2+n\right)⋮5\)
\(\Rightarrowđpcm\)
b, \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\)
\(=6n^2+31n+5-6n^2-7n+5\)
\(=24n+10=2\left(12n+5\right)⋮2\)
\(\Rightarrowđpcm\)
a)
= n3 + 2n2 + 3n2 + 6n - n - 2 + 2
= 5n2 + 5n
= 5(n2 + n ) chia hết cho 5
b)
= 2(12n +5) chia hết cho 2
a/ Chứng minh ới mọi số nguyên \(n\)thì: \(\left(n^2-3n+1\right)\left(n+2\right)-n^3+2\)chia hết cho 5
b/ Chứng minh với mọi số nguyên \(n\)thì: \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-10\right)\)chia hết cho 2
tìm số nguyên n sao cho: \(\left(n+5\right)\left(n+6\right)⋮6n\)
GIẢI:
Để \(\left(n+5\right)\left(n+6\right)⋮6n\) thì \(\frac{\left(n+5\right)\left(n+6\right)}{6n}\in N\)
Xét \(\frac{\left(n+5\right)\left(n+6\right)}{6n}=\frac{n^2+11n+30}{6n}=\frac{1}{6}\left(n+11+\frac{30}{n}\right)\)
Để \(\frac{\left(n+5\right)\left(n+6\right)}{6n}\in N\)thì \(n\in\)Ư(30)
Sau đó thử vào \(\frac{1}{6}\left(n+11+\frac{30}{n}\right)\)Để loại các giá trị
Kết Quả: \(n\in\left\{1;3;10;30\right\}\)
Chứng minh rằng
a) \(n^3-n\)chia hết cho 6 \(\left(n\in Z\right)\)
b) \(\left(m^3n-mn^3\right)\)chia hết cho 6 \(\left(m,n\in Z\right)\)
c) \(n\left(n+1\right)\left(2n+1\right)\)chia hết cho 6
d)\(\left(n^5-n\right)\)chia hết cho 30
e) \(\left(m^5n-mn^5\right)\)chia hết cho 30
Giúp mình với
Thanks các bạn nhiều =))
Chứng minh: \(n^3-6n^2-13n+18\) chia hết cho 6 \(\left(n\in Z\right)\)
CMR: n\(\in\)Z
a)\(\left(n+3\right)^2-\left(n-1\right)^2\)chia hết cho 8
b)\(\left(n+6\right)^2-\left(n-6\right)^2\)chia hết cho 24
c)\(\left(n^2+3n+1\right)^2-1\)chia hết cho 24 \(\forall\)n\(\in\)Z
a) \(\left(n+3\right)^2-\left(n-1\right)^2\)
\(=\left(n+3+n-1\right)\left(n+3-n+1\right)\)
\(=\left(2n+2\right)4\)
\(=2\left(n+1\right).4\)
\(=8\left(n+1\right)⋮8\)
=> đpcm
a/\(\left(n+3\right)^2-\left(n-1\right)^2.\)
\(=\left(n^2+6n+9\right)-\left(n^2-2n+1\right)\)
\(=n^2+6n+9-n^2+2n-1\)
\(=8n+8\)
\(=8\left(n+1\right)\)
có \(8\left(n+1\right)⋮8\)
\(\Rightarrow\left(n+3\right)^2-\left(n-1\right)^2⋮8\)
b/ \(\left(n+6\right)^2-\left(n-6\right)^2\)
\(=\left(n^2+12n+36\right)-\left(n^2-12n+36\right)\)
\(=n^2+12n+36-n^2+12n-36\)
\(=24n\)
có \(24n⋮24\)
\(\Rightarrow\left(n+6\right)^2-\left(n-6\right)^2⋮24\)