Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tạ Lương Minh Hoàng
Xem chi tiết
Nguyễn Ngọc Bảo Trân
25 tháng 12 2015 lúc 18:15

có dạng này nhưng là số chẵn nhân chãn

Nghiêm Quỳnh Trang
Xem chi tiết
an
27 tháng 12 2015 lúc 20:14

2S=2/1.3+2/3.5+....+2/99.101

2S=1-1/3+1/3-1/5+....+1/99-1/101

2S=1-1/101

2S+1/101=1-1/101+1/101=1

Nho tick nha

Lê Phương Thảo
27 tháng 12 2015 lúc 20:14

\(S=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)

\(S=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)

\(S=1-\frac{1}{101}=\frac{100}{101}\)

\(2S+\frac{1}{101}=\frac{100}{101}\)

\(S=2.\frac{100}{101}+\frac{1}{101}\)

\(\Rightarrow S=\frac{201}{101}\)

****

Lê Hiền Hiếu
2 tháng 1 2016 lúc 21:59

2S + \(\frac{1}{101}\)=\(\frac{201}{101}\)

Trần Thị Hải
Xem chi tiết
Mai Ngọc
6 tháng 1 2016 lúc 20:01

\(S=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)

\(2S=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)

\(2S=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)

\(2S=1-\frac{1}{101}\Rightarrow2S+\frac{1}{101}=1\)

Phương Thảo Lâm
Xem chi tiết
Nguyễn Nhật Minh
24 tháng 12 2015 lúc 6:10

\(2S=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.........+\frac{1}{99}-\frac{1}{101}=1-\frac{1}{101}\)

\(2S+\frac{1}{101}=1-\frac{1}{101}+\frac{1}{101}=1\)

✓ ℍɠŞ_ŦƦùM $₦G ✓
24 tháng 12 2015 lúc 6:40

Nguyễn Nhật Minh đúng rồi

Cường Lucha
24 tháng 12 2015 lúc 6:50

2S+\(\frac{1}{100}\)=1

Cho minh vai li-ke cho tron 130 nha

Vũ Thị Minh Huyền
Xem chi tiết
Nguyễn Nhật Minh
27 tháng 12 2015 lúc 20:49

\(2S=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{2}{99.101}=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{99}-\frac{1}{101}\)

\(2S=1-\frac{1}{101}=\frac{100}{101}\)

\(S=\frac{50}{101}\)

zaazzaaz
Xem chi tiết
Thanh Thiên Bạch Phượng...
30 tháng 7 2018 lúc 11:02

còn cần không bạn, mk làm cho

nguyen thanh nhan
Xem chi tiết
hong pham
29 tháng 6 2015 lúc 21:26

Ta có: \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{x.\left(x+2\right)}=\frac{50}{101}\)

suy ra: \(\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{x}-\frac{1}{x+2}\right)=\frac{50}{101}\)

\(\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{x+2}\right)=\frac{50}{101}\)

\(\frac{1}{1}-\frac{1}{x+2}=\frac{50}{101}:\frac{1}{2}=\frac{100}{101}\)

\(\frac{1}{x+2}=1-\frac{100}{101}=\frac{1}{101}\)

suy ra: \(x+2=101\)

suy ra: \(101-2=99\)

Đào Bùi Tuấn Chi
Xem chi tiết
huyenthoaikk
22 tháng 3 2021 lúc 20:49

S= 1/1.3 + 1/3.5 + 1/5.7 +................+ 1/200.202

=>S=1/2.(2/1.3+2/3.5+2/5.7+...+2/200.202)

=>S=1/2.(3-1/1.3+5-3/3.5+...+202-200/200.202)

=>S=1/2.(1-1/3+1/3-1/5+...+1/200-1/202)

=>S=1/2.(1-1/202)

=>S=1/2.201/202

=>S=201/404

Vậy S=201/404

Hà Thúy Anh
Xem chi tiết
Nguyễn Ngọc Quý
9 tháng 1 2016 lúc 18:18

\(S=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{99}+\frac{1}{99}-\frac{1}{101}\right)\)

\(S=\frac{1}{2}.\left(1-\frac{1}{101}\right)=\frac{1}{2}\times\frac{100}{101}=\frac{50}{101}\)

Lê Minh Toàn
9 tháng 1 2016 lúc 18:21

\(S=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{99.100}\)

\(S=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

\(S=1-\frac{1}{100}\)

\(S=\frac{99}{100}\)

Nguyễn Ngọc Quý
9 tháng 1 2016 lúc 18:35

\(S=\frac{1}{1\times3}+\frac{1}{3\times5}+...+\frac{1}{99\times101}\) chứ bạn