Cho S=1/1.3+1/3.5+1/5.7+............+1/99.101
Khi đó 2S+1/101=...........
Trả lời :............
Cho S=1/1.3+1/3.5+1/5.7+...+1/99.100. Khi đó 2S+1/101
có dạng này nhưng là số chẵn nhân chãn
Cho S = 1/1.3 + 1/3.5 +1/5.7 + ......+ 1/99.101. Khi đó 2S + 1/101 = ?
2S=2/1.3+2/3.5+....+2/99.101
2S=1-1/3+1/3-1/5+....+1/99-1/101
2S=1-1/101
2S+1/101=1-1/101+1/101=1
Nho tick nha
\(S=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)
\(S=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)
\(S=1-\frac{1}{101}=\frac{100}{101}\)
\(2S+\frac{1}{101}=\frac{100}{101}\)
\(S=2.\frac{100}{101}+\frac{1}{101}\)
\(\Rightarrow S=\frac{201}{101}\)
****
2S + \(\frac{1}{101}\)=\(\frac{201}{101}\)
Cho \(S=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+.......+\frac{1}{99.101}\)
Khi đó \(2S+\frac{1}{101}=..............\)
Giúp mk nha
\(S=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)
\(2S=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)
\(2S=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)
\(2S=1-\frac{1}{101}\Rightarrow2S+\frac{1}{101}=1\)
Cho \(S\) = \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)
Khi đó \(2S+\frac{1}{101}=\)
\(2S=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.........+\frac{1}{99}-\frac{1}{101}=1-\frac{1}{101}\)
\(2S+\frac{1}{101}=1-\frac{1}{101}+\frac{1}{101}=1\)
2S+\(\frac{1}{100}\)=1
Cho minh vai li-ke cho tron 130 nha
Cho S = 1/1.3+1/3.5+1/5.7+...+1/99.101 . Khi đó 2S+1/101=?
\(2S=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{2}{99.101}=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{99}-\frac{1}{101}\)
\(2S=1-\frac{1}{101}=\frac{100}{101}\)
\(S=\frac{50}{101}\)
Tính tổng
a. 1/1.2 + 1/2.3 + 1/3.4 + ...+ 1/2015.2016
b. 2/1.3 + 2/3.5 + 2/5.7 + ...+ 2/99.101
c. 5/1.3 + 5/3.5 + 5/5.7 + ...+ 5/99.101
d. 1/2 + 1/6 + 1/12 + 1/20 + ...+ 1/9900
bn nào trả lời nhanh mik tích, cảm ơn ạ
còn cần không bạn, mk làm cho
Tìm x biết : 1/1.3+ 1/3.5+ 1/5.7+...+ 1/x.(x+2)=50/101.
Ta có: \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{x.\left(x+2\right)}=\frac{50}{101}\)
suy ra: \(\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{x}-\frac{1}{x+2}\right)=\frac{50}{101}\)
\(\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{x+2}\right)=\frac{50}{101}\)
\(\frac{1}{1}-\frac{1}{x+2}=\frac{50}{101}:\frac{1}{2}=\frac{100}{101}\)
\(\frac{1}{x+2}=1-\frac{100}{101}=\frac{1}{101}\)
suy ra: \(x+2=101\)
suy ra: \(101-2=99\)
S= 1/1.3 + 1/3.5 + 1/5.7 +................+ 1/200.202
S= 1/1.3 + 1/3.5 + 1/5.7 +................+ 1/200.202
=>S=1/2.(2/1.3+2/3.5+2/5.7+...+2/200.202)
=>S=1/2.(3-1/1.3+5-3/3.5+...+202-200/200.202)
=>S=1/2.(1-1/3+1/3-1/5+...+1/200-1/202)
=>S=1/2.(1-1/202)
=>S=1/2.201/202
=>S=201/404
Vậy S=201/404
S=1/1.3+1/3.5+1/5.7+...+1/99.100
\(S=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{99}+\frac{1}{99}-\frac{1}{101}\right)\)
\(S=\frac{1}{2}.\left(1-\frac{1}{101}\right)=\frac{1}{2}\times\frac{100}{101}=\frac{50}{101}\)
\(S=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{99.100}\)
\(S=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(S=1-\frac{1}{100}\)
\(S=\frac{99}{100}\)
\(S=\frac{1}{1\times3}+\frac{1}{3\times5}+...+\frac{1}{99\times101}\) chứ bạn