cho a,b,c là 3 số thực thỏa mãn a+b+c=3. tìm giá trị nhỏ nhất của biểu thức Q=\(\frac{a^3+b^3}{2ab}\)+\(\frac{b^3+c^3}{2bc}\)+\(\frac{c^3+a^3}{2ca}\)
tui cần gấp lắm, ai làm nhanh tui ticks cho!!!!
1 . )
Cho 3 số a,b,c dương. Tìm giá trị lớn nhất của biểu thức
\(P=\frac{a}{2a+b+c}+\frac{b}{2b+c+a}+\frac{c}{2c+a+b}\)
2
cho các số thực không âm a,b,c thỏa mãn \(\sqrt{a}+\sqrt{b}+\sqrt{c}=3\)
Tìm giá trị nhỏ nhất của biểu thức
\(\sqrt{3a^2+2ab+3b^2}+\sqrt{3b^2+2bc+3c^2}+\sqrt{3c^2+2ca+3a^2}\)
1) Chứng minh BDT sau với a,b > 0:
\(\frac{a^n}{x}+\frac{b^n}{y}\ge\frac{\left(a+b\right)^2}{x+y}\)
2) Cho a,b,c là các số dương thoả mãn a+b+c=2019
Tìm giá trị nhỏ nhất của \(G=\frac{a^3+b^3}{2ab}+\frac{b^3+c^3}{2bc}+\frac{c^3+a^3}{2ca}\)
Ta có:
\(a^3+b^3\ge ab\left(a+b\right)\)
\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) ( luôn đúng )
Áp dụng:
\(G=\frac{a^3+b^3}{2ab}+\frac{b^3+c^3}{2bc}+\frac{c^3+a^3}{2ca}\)
\(\ge\frac{ab\left(a+b\right)}{2ab}+\frac{bc\left(b+c\right)}{2bc}+\frac{ca\left(c+a\right)}{2ca}\)
\(=\frac{a+b}{2}+\frac{b+c}{2}+\frac{c+a}{2}\)
\(=a+b+c=2019\)
Dấu "=" xảy ra tại a=b=c=673
Giá trị tuyệt đối A= | x - 2 | + | x - 5|
Ủa sao câu 1 bậc của vế trái lại khác bậc vế phải?
Cho các số dương \(a,b,c\)thỏa mãn \(a+b+c=3\)tìm GTLN của biểu thức: \(P=\frac{a^3}{3a-ab-ca+2bc}+\frac{b^3}{3b-bc-ab+2ca}+\frac{c^3}{3c-ca-bc+2ab}+3abc\)
Sử dụng giả thiết a + b + c = 3, ta được: \(\frac{a^3}{3a-ab-ca+2bc}=\frac{a^3}{\left(a+b+c\right)a-ab-ca+2bc}\)\(=\frac{a^3}{a^2+2bc}\)
Tương tự ta có \(\frac{b^3}{3b-bc-ab+2ca}=\frac{b^3}{b^2+2ca}\); \(\frac{c^3}{3c-ca-bc+2ab}=\frac{c^3}{c^2+2ab}\)
Khi đó thì \(P=\frac{a^3}{a^2+2bc}+\frac{b^3}{b^2+2ca}+\frac{c^3}{c^2+2ab}+3abc\)\(=\left(a+b+c\right)-\frac{2abc}{a^2+2bc}-\frac{2abc}{b^2+2ca}-\frac{2abc}{c^2+2ab}+3abc\)\(=3+abc\left[3-2\left(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ca}+\frac{1}{c^2+2ab}\right)\right]\)\(\le3+abc\left[3-2.\frac{9}{a^2+b^2+c^2+2\left(ab+bc+ca\right)}\right]\)(Theo BĐT Bunyakovsky dạng phân thức)\(=3+abc\left[3-2.\frac{9}{\left(a+b+c\right)^2}\right]\le3+\left(\frac{a+b+c}{3}\right)^3=4\)
Đẳng thức xảy ra khi a = b = c = 1
cho a b c là các số thực dương thỏa mãn a+b+c=3. Tìm giá trị nhỏ nhất cảu biểu thức
P=\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{a^2+b^2}\
cho a b c là các số thực dương thỏa mãn a+b+c=3. Tìm giá trị nhỏ nhất cảu biểu thức
P=\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{a^2+b^2}\)
cho a b c là các số thực dương thỏa mãn a+b+c=3. Tìm giá trị nhỏ nhất cảu biểu thức
P=\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{a^2+b^2}\)
Cho a, b, c là các số thực dương thỏa mãn a + b + c = 6. Tìm giá trị nhỏ nhất của biểu thức : \(P=\frac{a^3}{\left(b+c\right)^2}+\frac{b^3}{\left(c+a\right)^2}+\frac{c^3}{\left(a+b\right)^2}\)
Câu hỏi của Phạm Trần Minh Trí - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo.
Cho a, b, c là các số thực dương thỏa mãn a + b + c = 6. Tìm giá trị nhỏ nhất của biểu thức: \(P=\frac{a^3}{\left(b+c\right)^2}+\frac{b^3}{\left(c+a\right)^2}+\frac{c^3}{\left(a+b\right)^2}\)
Áp dụng BĐT AM-GM: \(\frac{a^3}{\left(b+c\right)^2}+\frac{b+c}{8}+\frac{b+c}{8}\ge\frac{3}{4}a\)
Suy ra \(\frac{a^3}{\left(b+c\right)^2}\ge\frac{3a-b-c}{4}\)
Tương tự các BĐT còn lại và cộng theo vế ta được \(VT\ge\frac{a+b+c}{4}=\frac{3}{2}\)
Đẳng thức xảy ra khi a = b= c = 2
Có cách UCT :)
\(P=\Sigma_{cyc}\frac{a^3}{\left(6-a\right)^2}\)
Xét BĐT phụ: \(\frac{a^3}{\left(6-a\right)^2}\ge a-\frac{3}{2}\Leftrightarrow\frac{27\left(a-2\right)^2}{2\left(a-6\right)^2}\ge0\)(luôn đúng)
Thiết lập tương tự 2 BĐT còn lại và cộng theo vế..
Đẳng thức xảy ra khi a=b=c=2
Đó nhớ cho mình nha
Cho a,b,c là 3 số thực dương thỏa mãn a+b+c=3.Tìm giá trị nhỏ nhất của biểu thức \(M=\frac{a+1}{1+b^2}+\frac{b+1}{1+c^2}+\frac{c+1}{1+a^2}\)