Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trang Dang
Xem chi tiết
Nguyệt
9 tháng 12 2018 lúc 10:59

\(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}=\frac{bxz-cyx}{ax}=\frac{cxy-azy}{by}=\frac{ayz-bxz}{cz}=\frac{bxz-cxy+cyz-azy+ayz-bxz}{ax+by+cz}=0\)

\(\frac{bz-cy}{a}=0\Rightarrow bz=cy\Rightarrow\frac{b}{y}=\frac{c}{z}\)

\(\frac{cx-az}{b}=0\Rightarrow cx=az\Rightarrow\frac{c}{z}=\frac{a}{x}\)

\(\frac{ay-bx}{c}=0\Rightarrow ay=bx\Rightarrow\frac{a}{x}=\frac{b}{y}\)

\(\Rightarrow\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\left(đpcm\right)\)

Lê Anh Sơn
Xem chi tiết
ST
16 tháng 9 2017 lúc 21:12

\(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)

\(\Rightarrow\frac{bxz-cxy}{ax}=\frac{cxy-azy}{by}=\frac{ayz-bxz}{cz}=\frac{bxz-cxy+cxy-azy+ayz-bxz}{ax+by+cz}=\frac{0}{ax+by+cz}=0\)

\(\Rightarrow\hept{\begin{cases}\frac{bz-cy}{a}=0\\\frac{cx-az}{b}=0\\\frac{ay-bx}{c}=0\end{cases}\Rightarrow\hept{\begin{cases}bz-cy=0\\cx-az=0\\ay-bx=0\end{cases}\Rightarrow}\hept{\begin{cases}bz=cy\\cx=az\\ay=bx\end{cases}\Rightarrow}\hept{\begin{cases}\frac{z}{c}=\frac{y}{b}\left(1\right)\\\frac{x}{a}=\frac{z}{c}\left(2\right)\\\frac{y}{b}=\frac{x}{a}\left(3\right)\end{cases}}}\)

Từ (1),(2),(3) suy ra \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)

Trà Nhật Đông
Xem chi tiết
Hann Hann
Xem chi tiết
Minh Triều
3 tháng 7 2015 lúc 10:03

\(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}=\frac{a\left(bz-cy\right)}{a^2}=\frac{b\left(cx-az\right)}{b^2}=\frac{c\left(ay-bx\right)}{c^2}\)

=\(\frac{abz-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{acy-bcx}{c^2}\)

=\(\frac{abz-acy+bcx-abz+acy-bcx}{a^2+b^2+c^2}=\frac{0}{a^2+b^2+c^2}=0\)

suy ra \(\frac{bz-cy}{a}=0\Rightarrow bz-cy=0\Rightarrow bz=cy\Rightarrow\frac{z}{c}=\frac{y}{b}\left(1\right)\)

\(\frac{cx-az}{b}=0\Rightarrow cx-az=0\Rightarrow cx=az\Rightarrow\frac{x}{a}=\frac{z}{c}\left(2\right)\)

từ (1) và (2) suy ra \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)

Đinh Tuấn Việt
3 tháng 7 2015 lúc 9:54

Bạn xem ở :

http://kiemtailieu.com/khoa-hoc-tu-nhien/tai-lieu/379-bdt-tu-cac-k-olympic/23.html

Minh Triều
3 tháng 7 2015 lúc 9:55

đơi mjk giải nha          

TOAN 2000
Xem chi tiết
phạm hồng hạnh
Xem chi tiết
Oo Bản tình ca ác quỷ oO
29 tháng 6 2016 lúc 10:49

Vì bz-cy/a=cx-az/b=ay-bx/c 

=> a(bz-cy)/a^2=b(cx-az)/b^2=c(ay-bx)/c^2 

=> abz-acy/a^2=bcx=baz/b^2=cay-cbx/c^2 

theo tính chất của dãy tỉ số bằng nhau : 

=> abz-acy/a^2=bcx=baz/b^2=cay-cbx/c^2=a^2+... 

= 0/a^2+b^2+c^2=0 

vì bz-cy/a=0=>bz=cy=>y/b=z/c (1) 

vì cx-az/b=0=>cx=az=>x/a=z/c (2) 

từ (1) và (2) => x/a=y/b=z/c

t i c k nhé!! 4645767856875897696890806895789568467856

Biokgnbnb
Xem chi tiết
OoO Kún Chảnh OoO
Xem chi tiết
Trần Thị Thanh Hằng
21 tháng 1 2016 lúc 13:21

cái này mà là toán lớp 7 á

✓ ℍɠŞ_ŦƦùM $₦G ✓
21 tháng 1 2016 lúc 13:41

\(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)

\(\Rightarrow\frac{a\left(bz-cy\right)}{a^2}=\frac{b\left(cx-az\right)}{b^2}=\frac{c\left(ay-bx\right)}{c^2}\)

\(\Rightarrow\frac{abz-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{acy-bcx}{c^2}=\frac{abz-acy+bcx-abz+acy-bcx}{a^2+b^2+c^2}\)

\(=\frac{0}{a^2+b^2+c^2}=0\)

\(\Rightarrow abz=acy\Rightarrow\frac{y}{b}=\frac{z}{c};bcx=abz\Rightarrow\frac{x}{a}=\frac{z}{c}\Rightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)

piojoi
Xem chi tiết
Akai Haruma
10 tháng 9 2023 lúc 12:51

Lời giải:
Sửa đề: $z$ đầu tiên ở mẫu đổi thành $a$.

Ta có:

$\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}$

$=\frac{abz-cya}{a^2}=\frac{bcx-abz}{b^2}=\frac{acy-bcx}{c^2}$

$=\frac{abz-cya+bcx-abz+acy-bcx}{a^2+b^2+c^2}=\frac{0}{a^2+b^2+c^2}=0$

$\Rightarrow bz-cy=cx-az=ay-bx=0$

$\Rightarrow bz=cy; cx=az; ay=bx$

$\Rightarrow \frac{x}{a}=\frac{y}{b}=\frac{z}{c}$

Ta có đpcm.