Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Tuấn Minh
Xem chi tiết
Huong Bui
Xem chi tiết
Trần Văn Phú
Xem chi tiết
Phạm Mai Phương
Xem chi tiết
Trần Nguyên Sơn
Xem chi tiết
Đỗ Thanh Trúc
Xem chi tiết
Thân Thùy Dương
Xem chi tiết

\(\(b)\frac{\sqrt{a}+a\sqrt{b}-\sqrt{b}-b\sqrt{a}}{ab-1}\left(a,b\ge0;a,b\ne1\right)\)\)

\(\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)+\left(a\sqrt{b}-b\sqrt{a}\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab+1}\right)}\)\)

\(\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)+\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab}+1\right)}\)\)

\(\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{ab}+1\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab}+1\right)}\)\)

\(\(=\frac{\sqrt{a}-\sqrt{b}}{\left(\sqrt{ab}-1\right)}\left(a,b\ge0.a,b\ne1\right)\)\)

_Minh ngụy_

\(\(c)\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\)\)( tự ghi điều kiện )

\(\(=\frac{x\sqrt{x}+y\sqrt{y}-\left(\sqrt{x}-\sqrt{y}\right)^2.\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\)\)

\(\(=\frac{x\sqrt{x}+y\sqrt{y}-\left(x\sqrt{x}+x\sqrt{y}-2x\sqrt{y}-2y\sqrt{x}+y\sqrt{x}+y\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\)\)

\(\(=\frac{x\sqrt{y}+y\sqrt{x}}{\sqrt{x}+\sqrt{y}}\)\)( phá ngoặc và tính )

\(\(=\frac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}=\sqrt{xy}\)\)

_Minh ngụy_

\(\(d)\sqrt{\frac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}\left(x\ge0\right)\)\)

\(\(=\sqrt{\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)^2}}\)\)

\(\(=\frac{|\sqrt{x}-1|}{|\sqrt{x}+1|}\)\)

\(\(=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)\)( vì \(\(x\ge0\)\))

_Minh ngụy_

Lê Tài Bảo Châu
Xem chi tiết
Minh Nguyen
7 tháng 7 2020 lúc 14:06

Bài 2 :

a) \(ĐKXĐ:\hept{\begin{cases}x;y>0\\x\ne y\end{cases}}\)

b) \(A=\left(\sqrt{x}+\frac{y-\sqrt{xy}}{\sqrt{x}-\sqrt{y}}\right):\frac{x\sqrt{xy}+y\sqrt{xy}}{\sqrt{xy}\left(y-x\right)}\)

\(\Leftrightarrow A=\frac{x-\sqrt{xy}+y-\sqrt{xy}}{\sqrt{x}-\sqrt{y}}:\frac{x+y}{y-x}\)

\(\Leftrightarrow A=\frac{\left(\sqrt{x}-\sqrt{y}\right)^2}{\sqrt{x}-\sqrt{y}}\cdot\frac{y-x}{x+y}\)

\(\Leftrightarrow A=\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(y-x\right)}{x+y}\)

c) Thay \(x=4+2\sqrt{3},y=4-2\sqrt{3}\)vào A, ta được :

   \(A=\frac{\left(\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\right)\left(4-2\sqrt{3}-4-2\sqrt{3}\right)}{4+2\sqrt{3}+4-2\sqrt{3}}\)

\(\Leftrightarrow A=\frac{\left(\sqrt{\left(1+\sqrt{3}\right)^2}-\sqrt{\left(1-\sqrt{3}\right)^2}\right).\left(-4\sqrt{3}\right)}{8}\)

\(\Leftrightarrow A=\frac{\left(1+\sqrt{3}-\sqrt{3}+1\right).\left(-4\sqrt{3}\right)}{8}=\frac{-8\sqrt{3}}{8}=-\sqrt{3}\)

Vậy ....

Khách vãng lai đã xóa
Tran Le Khanh Linh
7 tháng 7 2020 lúc 20:46

Bài 1:

\(\frac{2\sqrt{8}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}-\frac{\sqrt{5}+\sqrt{27}}{\sqrt{30}-\sqrt{2}}=\frac{2\sqrt{2\cdot4}-\sqrt{3\cdot4}}{\sqrt{2\cdot9}-\sqrt{16\cdot3}}-\frac{\sqrt{5}+\sqrt{9\cdot3}}{\sqrt{30}-\sqrt{2}}\)

\(=\frac{4\sqrt{2}-2\sqrt{3}}{3\sqrt{2}-4\sqrt{3}}-\frac{\sqrt{5}+3\sqrt{3}}{\sqrt{30}-\sqrt{2}}=\frac{\left(4\sqrt{2}-2\sqrt{3}\right)\left(\sqrt{30}-\sqrt{2}\right)-\left(\sqrt{5}+3\sqrt{3}\right)\left(3\sqrt{2}-4\sqrt{3}\right)}{\left(3\sqrt{2}-4\sqrt{3}\right)\left(\sqrt{30}-\sqrt{2}\right)}\)

\(=\frac{4\sqrt{60}-8-2\sqrt{90}+2\sqrt{6}-3\sqrt{10}+4\sqrt{15}-9\sqrt{6}+36}{3\sqrt{60}-6-4\sqrt{90}+4\sqrt{6}}\)

\(=\frac{8\sqrt{15}-8-6\sqrt{10}+2\sqrt{6}-3\sqrt{10}+4\sqrt{15}-9\sqrt{6}+36}{6\sqrt{15}-6-12\sqrt{10}+4\sqrt{6}}\)

\(=\frac{12\sqrt{15}-2\sqrt{10}-7\sqrt{6}+28}{6\sqrt{15}-12\sqrt{10}+4\sqrt{6}-6}\)

Khách vãng lai đã xóa
Bảo Bi Bùi
Xem chi tiết
Bảo Bi Bùi
10 tháng 9 2019 lúc 20:51

các bn trả lời giúp mk câu hỏi đó vs 

Anna Taylor
10 tháng 9 2019 lúc 21:44

a/ \(\frac{\sqrt{a}-\left(\sqrt{a}\right)^2}{\sqrt{a}-1}\)

=\(\frac{\sqrt{a}\left(1-\sqrt{a}\right)}{\sqrt{a}-1}\)

=\(\frac{-\sqrt{a}\left(1-\sqrt{a}\right)}{1-\sqrt{a}}\)

=\(-\sqrt{a}\)

Anna Taylor
10 tháng 9 2019 lúc 21:48

b/

=\(\frac{\left(\sqrt{a}\right)^2-\left(\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}\)

=\(\frac{\left(\sqrt{a}+\sqrt{b}\right)\cdot\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\)

=\(\sqrt{a}+\sqrt{b}\)