Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
HOAI DƯƠNG THI
Xem chi tiết
Odette Auspicious Charm
Xem chi tiết
Nguyễn Trung Hiếu
Xem chi tiết
Thanh Thuy Tran
4 tháng 2 2017 lúc 8:42

Bài b nhé bạn!

\(\hept{\begin{cases}\frac{xyz}{x+y}=2\\\frac{xyz}{y+z}=\frac{6}{5}\\\frac{xyz}{x+z}=\frac{3}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{x+y}{xyz}=\frac{1}{2}\\\frac{y+z}{xyz}=\frac{5}{6}\\\frac{x+z}{xyz}=\frac{2}{3}\end{cases}}}\)\(\Leftrightarrow\hept{\begin{cases}\frac{1}{yz}+\frac{1}{xz}=\frac{1}{2}\\\frac{1}{xz}+\frac{1}{xy}=\frac{5}{6}\\\frac{1}{xy}+\frac{1}{yz}=\frac{2}{3}\end{cases}}\Rightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=\frac{\frac{1}{2}+\frac{5}{6}+\frac{2}{3}}{2}=1\)

Trừ lại từng phương trình trong hệ:

\(\hept{\begin{cases}\frac{1}{xy}=\frac{1}{2}\\\frac{1}{yz}=\frac{1}{6}\\\frac{1}{xz}=\frac{1}{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}xy=2\\yz=6\\xz=3\end{cases}\Rightarrow xyz=\sqrt{2.6.3}=6}\)

Chia lại từng phương trình trong hệ mới, được:

\(\hept{\begin{cases}z=3\\x=1\\y=2\end{cases}}\)

Vậy \(\left(x;y;z\right)=\left(1;2;3\right)\)

Xong rồi đó!!!

ngoc bich 2
Xem chi tiết
Thanh Tâm
Xem chi tiết
Nguyễn Cảnh Kyf
Xem chi tiết
nguyễn thị hải yến
1 tháng 3 2020 lúc 13:01

I don't know how to do exercise

Khách vãng lai đã xóa
Nguyễn Linh Chi
1 tháng 3 2020 lúc 16:50

\(\hept{\begin{cases}x+y-z=7\\x^2+y^2-z^2=37\\x^3+y^3-z^3=1\end{cases}}\)<=> \(\hept{\begin{cases}x+y=7+z\\x^2+y^2=37+z^2\\x^3+y^3=1+z^3\end{cases}}\)

Ta có: \(x^2+y^2=37+z^2\)

<=> \(\left(x+y\right)^2-2xy=37+z^2\)

<=> \(2xy=\left(7+z\right)^2-37-z^2\)

<=> \(xy=6+7z\)

Ta có: \(x^3+y^3=1+z^3\)

<=> \(\left(x+y\right)\left(x^2+y^2-xy\right)=1+z^3\)

<=> \(\left(7+z\right)\left(37+z^2-6-7z\right)=1+z^3\)đây là phương trình bậc 2. Em giải ra tìm z => x; y

Khách vãng lai đã xóa
Trang-g Seola-a
Xem chi tiết
Blue Moon
Xem chi tiết
alibaba nguyễn
15 tháng 11 2018 lúc 8:41

a/ Đảo ngược lại rồi đặc \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\)

alibaba nguyễn
15 tháng 11 2018 lúc 8:44

b/ Dễ thấy vai trò x, y, z như nhau nên ta chỉ cần xét 1 trường hợp tiêu biểu thôi.

Xét \(x>y>z\)

\(\Rightarrow\frac{1}{x}< \frac{1}{y}< \frac{1}{z}\)

\(\Rightarrow x+\frac{1}{y}>z+\frac{1}{x}\)(trái giả thuyết)

\(\Rightarrow x=y=z\)'

\(\Rightarrow x+\frac{1}{x}=2\)

\(\Leftrightarrow x=1\)

shitbo
Xem chi tiết
Thanh Tùng DZ
20 tháng 12 2019 lúc 19:36

EZ game

Khách vãng lai đã xóa