Tìm n thuộc N sao cho 1!+2!+3!+4!+ ...........+n! là số chính phương
mọi người giúp mk vs nha,mk đang cần gắp lắm ạ
1.chứng minh rằng với mọi n thuộc N số A=9n^2+27n+7 không thể là lập phương đúng
2.tìm n thuộc N sao cho 9+2^n là số chính phương
3.tìm n thuộc N sao cho 3^n+19 là số chính phương
4.tìm n thuộc Z sao cho n^4+2n^3+2n^2+n+7 là số chính phương
1,Tìm n thuộc N để n+1 và 7n+4 là 2 số nguyên tố cùng nhau.
2,Tìm số tự nhiên n sao cho n2+3 là số chính phương.
Bài 1: Gọi ước chung lớn nhất của n + 1 và 7n + 4 là d
Ta có: \(\left\{{}\begin{matrix}n+1⋮d\\7n+4⋮d\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}7n+7⋮d\\7n+4⋮d\end{matrix}\right.\) ⇒ 7n+ 7 - 7n - 4 ⋮ d
⇒ (7n - 7n) + (7 - 4) ⋮ d ⇒0 + 3 ⋮ d ⇒ 3 ⋮ d ⇒ d \(\in\) Ư(3) = {1; 3}
Nếu n = 3 thì n + 1 ⋮ 3 ⇒ n = 3k - 1 khi đó hai số sẽ không nguyên tố cùng nhau.
Vậy để hai số nguyên tố cùng nhau thì n \(\ne\) 3k - 1
Kết luận: n \(\ne\) 3k - 1
Tìm n thuộc N* sao cho : \(n^4+n^3+1\)là số chính phương
Đặt A=n^4+n^3+1
với n=1=>A=3=>loại
với n\(\ge\)2 ta có: (2n2+n−1)2< 4A ≤(2n2+n) => 4A = ( 2n2+ n )2 => n = 2 ( thỏa mãn )
Đặt A=n^4+n^3+1
với n=1=>A=3=>loại
với n>=2 ta có:\(\left(2n^2+n-1\right)^2< 4A\le\left(2n^2+n\right)^2\)=> \(4A=\left(2n^2+n\right)^2\)
-Giải PT này ra có n=2
mk ngồi giải lại ntn ms đúng
tìm n thuộc N* sao cho S=1!+2!+3!+......+n! là số chính phương
Để S là số chính phưong => 1! + 2! + 3! + ... + n! = m^2
Với n = 1 thì S = 1! = 1 là số chính phưong
Với n = 2 thì S = 1! + 2! = 3 không là số chính phưong
Với n = 3 thì S = 1! + 2! + 3! = 9 là số chính phưong
Với n = 4 thì S = 1! + 2! + 3! + 4! = 33 không là số chính phưong
Với n > 5 thì S có tạn cùng là 3 ( Vì 5! tạn cùng là 0, 6!, 7!, 8!, ... cũng tận cùng là 0 cộng với 33 là tổng các giai thùă của bốn số đầu khác 0)
Vậy n = 1; n = 3
Để S là số chính phưong => 1! + 2! + 3! + ... + n! = m^2
Với n = 1 thì S = 1! = 1 là số chính phưong
Với n = 2 thì S = 1! + 2! = 3 không là số chính phưong
Với n = 3 thì S = 1! + 2! + 3! = 9 là số chính phưong
Với n = 4 thì S = 1! + 2! + 3! + 4! = 33 không là số chính phưong
Với n > 5 thì S có tạn cùng là 3 ( Vì 5! tạn cùng là 0, 6!, 7!, 8!, ... cũng tận cùng là 0 cộng với 33 là tổng các giai thùă của bốn số đầu khác 0)
Vậy n = 1; n = 3
Tìm n thuộc N sao cho
1!+2!+3!+4!+...+n! là một số chính phương
Với n = 1 thì 1! = 1 = 1² là số chính phương .
Với n = 2 thì 1! + 2! = 3 không là số chính phương
Với n = 3 thì 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 3² là số chính phương
Với n ≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 còn 5!; 6!; …; n! đều tận cùng bởi 0 do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3 nên nó không phải là số chính phương .
Vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1; n = 3.
Bài 1: Tìm số tự nhiên n có 2 chữ số biết rằng 2.n+1 và 3.n+1 là các số chính phương.
Bài 2: Tìm số tự nhiên n sao cho S = 1!+2!+3!+...+ n! là số chính phương
Bài 3: Tìm số chính phương có 4 chữ số gồm cả 4 chữ số 0;2;3;5
Tìm STN n max sao cho
4^n+4^31+4^1984 là số chính phương
Tìm các STN m,n sao cho 2^n+3^m là số chính phương
Tìm x,y sao cho 9^x-3^x=y^2+2y+3
Tìm n thuộc N sao cho n ^ 2 + n + 1589 là số 1 chính phương
Để \(n^2+n+1589\) là số chính phương thì \(n^2+n+1589=a^2\left(a\in Z\right)\)
\(\Leftrightarrow4n^2+4n+6356=4a^2\)
\(\Leftrightarrow\left(4n^2+4n+1\right)+5355=\left(2a\right)^2\)
\(\Leftrightarrow\left(2n+1\right)^2-\left(2a\right)^2=-5355\)
\(\)\(\Leftrightarrow\left(2n-2a+1\right)\left(2n+2a+1\right)=-5355\)
Từ đây xét 2n - 2a + 1 ; 2n + 2a + 1 là các ước của - 5355 là ra
\(n^2+n+1589\)
\(n^2+n+1589=m^2\)
\(\Rightarrow\left(4n^2+1\right)^2+6355=4m^2\)
\(\Leftrightarrow\left(2m+2n+1\right)\left(2m-2n-1\right)=6355\)
\(2m+2n+1>2m-2n-1>0\)
Ta viết:\(\left(2m+2n+1\right)\left(2m-2n-1\right)=6355\cdot1=1271\cdot5=205\cdot31=155\cdot414\)
\(\Rightarrow n=\text{ 1588,316,43,28}\)
Bài 1 : cho 2 số tự nhiên m,n thỏa mãn đẳng thức 24.m^4 +1 = n^2. CMR tích số (m.n) chia hết cho 5
Bài 2: Tìm n thuộc N để (n^10+1) chia hết cho 10.
Bài 3: Tìm n thuộc N để (n^2+n+1) chia hết cho n^2+1
Bài 4:Tìm n thuộc N để ( n+5)(n+6) chia hết cho 6n
Bài 5: Tìm n thuộc N để ( 3n^2+3n+7) chia hết cho 5
Bài 6: Tìm n thuộc N để (2^n-1) chia hết cho 7
Bài 7 : Tìm n thuộc N để (3^n+63) chia hết cho 72
Bài 8: Cho n thuộc N* ; (n,10)=1. CMR : (n^4-1) chia hết cho 40
Bài 9: Cho n thuộc N* . CMR : A= (2^3n+1 + 2^3n-1 +1) chia hết cho 7
Bài 10: Tìm x,y sao cho xxyy( có gạch trên đầu) là số chính phương
Bài 11: Tìm x, y sao cho xyyy( có gạch trên đầu) là số chính phương
trời ơi những câu nào tương tự thì hỏi lmj hỏi 1 câu rồi tự làm tương tự!