B=\(\left(\frac{1}{3}\right)+\left(\frac{1}{3}\right)^2+\left(\frac{1}{3}\right)^3+....+\left(\frac{1}{3}\right)^{2013}.\)vậy số tự nhiên n thỏa mãn biết\(1-2B=\left(\frac{1}{3}\right)^n\)
Cho biểu thức \(B=\frac{1}{3}+\left(\frac{1}{3}\right)^2+\left(\frac{1}{3}\right)^3+...+\left(\frac{1}{3}\right)^{2013}\)
Số tự nhiên n thỏa mãn \(1-2B=\left(\frac{1}{3}\right)^n\) là ?
\(B=\frac{1}{3}+\left(\frac{1}{3}\right)^2+\left(\frac{1}{3}\right)^3+...+\left(\frac{1}{3}\right)^{2013}\). Số tự nhiên n thỏa mãn :\(1-2B=\left(\frac{1}{3}\right)^nlà_{ }\)?
Cho biểu thức: \(B=\frac{1}{3}+\left(\frac{1}{3}\right)^2+\left(\frac{1}{3}\right)^3+...+\left(\frac{1}{3}\right)^{2013}\)
Tìm số tự nhiên n thỏa mãn: \(1-2B=\left(\frac{1}{3}\right)^n\)
Cho biểu thức: \(M=\frac{1}{3}+\left(\frac{1}{3}\right)^2+\left(\frac{1}{3}\right)^3+...+\left(\frac{1}{3}\right)^{2013}\)
Tìm số tự nhiên n thỏa mãn : \(1-2B=\left(\frac{1}{3}\right)^n\)
1) Cho a, b là 2 số hữu tỉ thỏa mãn\(a^5+b^5=2a^2b^2\)
CMR: 1 - ab là bình phương của 1 số hữu tỉ
2) Cho x, y thỏa mãn \(\left|x-2005\right|+\left|x-2006\right|+\left|y-2007\right|+\left|x-2008\right|=3\) Tìm x, y.
3) Cho \(A=\left(1-\frac{1}{1+2}\right).\left(1-\frac{1}{1+2+3}\right).\left(1-\frac{1}{1+2+3+4}\right)...\left(1-\frac{1}{1+2+3+...+n}\right)\)
với n-1 thừa số và \(B=\frac{n+2}{n}\). Tìm \(\frac{A}{B}\)
Cho \(A=1+\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+\left(\frac{1}{2}\right)^4+...+\left(\frac{1}{2}\right)^{2013}\)
Tìm số tự nhiên n biết \(A+\left(\frac{1}{2}\right)^n=2\)
Tính ra A là 2-(1/2)^2013. Phần còn lại thì quá dễ r
(Để tính A từ dãy trên ta nhân 2 lên thành 2A. Rồi lấy 2A-A=A=...)
\(A=1+\frac{1}{2}+\left(\frac{1}{2}\right)^2+..............+\left(\frac{1}{2}\right)^{2013}\)
\(\Rightarrow2A=2+1+\frac{1}{2}+.......+\left(\frac{1}{2}\right)^{2013}\Rightarrow2A-A=A=2-\left(\frac{1}{2}\right)^{2013}\)
\(VI:A+\left(\frac{1}{2}\right)^n=2\Rightarrow n=2013\)
a)Tìm số nguyên dương n thỏa mãn:
\(\frac{1}{2}.\left(1+\frac{1}{1.3}\right).\left(1+\frac{1}{2.4}\right).\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{n.\left(n+2\right)}\right)=\frac{2013}{2014}\)
b)tìm a sao cho
\(\left(a+\frac{1}{1.3}\right)+\left(a+\frac{1}{3.5}\right)+\left(a+\frac{1}{5.7}\right)+...+\left(a+\frac{1}{23.25}\right)=11.a+\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\right)\)
Tính các tích sau: với n là số tự nhiên, n<3
a) \(\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right)\cdot...\cdot\left(1-\frac{1}{n}\right)\)
b) \(\left(1-\frac{1}{2^2}\right)\cdot\left(1-\frac{1}{3^2}\right)\cdot\left(1-\frac{1}{4^2}\right)\cdot...\cdot\left(1-\frac{1}{n^2}\right)\)
cho \(A=\frac{7}{3}.\frac{37}{3^2}....\frac{6^{2n}+1}{3^{2n}}\)và \(B=\left(1+\frac{1}{3}\right)\left(1+\frac{1}{3^2}\right)...\left(1+\frac{1}{3^{2n}}\right)\)với n thuộc N
a) Chứng minh: 5A-2B là số tự nhiên
b) Chứng minh với mọi số tự nhiên n khác 0 thì 5A-2B chia hết cho 45