Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Maianh NguyenThi
Xem chi tiết
Xuân Trà
Xem chi tiết
Aeris
Xem chi tiết
Trang Hà
Xem chi tiết
Nguyễn Minh Quang
16 tháng 7 2021 lúc 14:23

Để M có nghĩa thì \(\hept{\begin{cases}\sqrt{x}-3\ne0\\2-\sqrt{x}\ne0\\x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ne4\\x\ne9\end{cases}}}\)

ta có \(M=\frac{2\sqrt{x}-9+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)-\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(M=\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-3}\)

b.\(M=5=\frac{\sqrt{x}+1}{\sqrt{x}-3}\Leftrightarrow\sqrt{x}=4\Leftrightarrow x=16\)

Khách vãng lai đã xóa
Phạm Nguyễn Hoàng Anh
Xem chi tiết
Tuấn Nguyễn
12 tháng 6 2019 lúc 15:00

b) \(M=\frac{2}{\sqrt{x}-3}\in Z\Leftrightarrow\sqrt{x}-3\) là ước của 2.

\(\Leftrightarrow\sqrt{x}-3\in\left\{\pm1,\pm2\right\}\Leftrightarrow\sqrt{x}\in\left\{1,2,3,4,5\right\}\)

\(\Leftrightarrow x\in\left\{1,4,16,25\right\}\)

Đối chiếu điều kiện ta có:

\(x\in\left\{1,16,25\right\}\)

Đào Thu Hoà
12 tháng 6 2019 lúc 20:07

Để M là số nguyên thì \(\frac{2}{\sqrt{x}-3}\in Z\)    Suy ra \(\frac{2}{\sqrt{x}-3}=k\left(k\in N\right)\)

\(\Rightarrow\sqrt{x}-3=\frac{2}{k}\Leftrightarrow\sqrt{x}=\frac{2}{k}+3.\)\(\Rightarrow x=\left(\frac{2}{k}+3\right)^2\left(k\ne0\right).\)

Mà \(\sqrt{x}\ge0\Rightarrow\frac{2}{k}+3\ge0\Leftrightarrow\frac{2+3k}{k}\ge0\Leftrightarrow\hept{\begin{cases}k>0\\k\le-\frac{2}{3}\end{cases}\Leftrightarrow k\ne0\left(do-k\in Z\right).}\)

Lại theo ĐKXĐ ta có \(\hept{\begin{cases}\sqrt{x}\ne2\\\sqrt{x}\ne3\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{2}{\sqrt{x}-3}\ne-2\\\frac{2}{\sqrt{x}-3}\ne0\end{cases}\Leftrightarrow}\hept{\begin{cases}k\ne-2\\k\ne0\end{cases}.}}\)

Kết hợp lại ta có \(k\in Z,k\ne-2,k\ne0\)

Vậy để M là số nguyên thì \(x=\left(\frac{2}{k}+3\right)^2\)với \(k\in Z,k\ne-2,k\ne0.\)

Có sai chỗ nào mong mọi người chỉ cho .Cảm ơn nhiều 

P/S: Hầu hết các câu trả lời đều là tìm x nguyên , nhưng đề bài là tìm x thôi ạ! 

Tuấn Nguyễn
12 tháng 6 2019 lúc 14:57

a) Điều kiện xác định \(\hept{\begin{cases}x\ge0\\\sqrt{x}-2\ne\\\sqrt{x}-3\ne0\end{cases}0}\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ne4\\x\ne9\end{cases}}\)

\(M=\frac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{\sqrt{x}-3}\)

\(=\frac{2\sqrt{x}-9-\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)+\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{2\sqrt{x}-9-x+9+x-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{2\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{2}{\sqrt{x}-3}\)

Tô Hoài Dung
Xem chi tiết
nguyen thao
Xem chi tiết
Minh Nguyet Truong
Xem chi tiết
Tiểu Ma Bạc Hà
9 tháng 6 2017 lúc 11:14

Đặt \(\sqrt{x}=a\) , a \(\ge0\) 

a , Khi đó biểu thức trở thành :

Q = \(\frac{2a-9}{a^2-5a+6}-\frac{a+3}{a-2}-\frac{2a+1}{3-a}\)

Đến đây làm như lớp 8 thôi

ễnnguy Hùng
Xem chi tiết
Dương Lam Hàng
23 tháng 7 2018 lúc 15:10

a) \(ĐKXĐ:x\ne4;x\ne9\)

b) \(A=\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)

        \(=\frac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{2\sqrt{x}+1}{\sqrt{x}-3}\)

         \(=\frac{2\sqrt{x}-9-\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

          \(=\frac{2\sqrt{x}-9-x+9+2x-3\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{-\sqrt{x}+x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

           \(=\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-3}\)

c) Ta có: \(A=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\left(\sqrt{x}-3\right)+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)

\(\Rightarrow\sqrt{x}-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\) (ĐK: x thuộc Z)

\(\sqrt{x}-3\)1-12-24-4
\(\sqrt{x}\)42517-1
x2\(\sqrt{2}\)\(\sqrt{5}\)\(\sqrt{1}\)\(\sqrt{7}\)\(\varnothing\)

Vậy để A thuộc Z khi x = {2;\(\sqrt{2};\sqrt{5};\sqrt{1};\sqrt{7}\) }

nguyễn thanh tú
Xem chi tiết
nguyễn thanh tú
22 tháng 9 2019 lúc 17:37

xin lỗi các bạn nha mk chép sai đề ở phần thứ 3 phần mẫu mk xin sửa lại \(\frac{\sqrt{x}-3}{\sqrt{x}+3}\)