Điều kiện xác định: \(x\ge0\) và \(x\ne4\)\(-\frac{\sqrt{x}+6}{\sqrt{x}-2}< 3\Leftrightarrow\sqrt{x}+6< 6-3\sqrt{x}\Leftrightarrow4\sqrt{x}< 0\Leftrightarrow x< 0\) (Không xác định)
Vậy phương trình vô nghiệm.
Điều kiện xác định: \(x\ge0\) và \(x\ne4\)\(-\frac{\sqrt{x}+6}{\sqrt{x}-2}< 3\Leftrightarrow\sqrt{x}+6< 6-3\sqrt{x}\Leftrightarrow4\sqrt{x}< 0\Leftrightarrow x< 0\) (Không xác định)
Vậy phương trình vô nghiệm.
\[D=\left ( \frac{1}{3\sqrt{x}-6} +\frac{1}{x-2\sqrt{x}}\right )\left ( \frac{1}{6} +\frac{1}{2\sqrt{x}}\right )\\ D=\left ( \frac{1}{3\left ( \sqrt{x}-2 \right )} +\frac{1}{\sqrt{x}\left ( \sqrt{x}-2 \right )}\right ).\frac{\sqrt{x}+3}{6\sqrt{x}}\\ D=\frac{\sqrt{x}+3}{3\sqrt{x}\left ( \sqrt{x}-2 \right )}.\frac{\sqrt{x}+3}{6\sqrt{x}}\\ D=\frac{\left ( \sqrt{x}+3 \right )^{2}}{18x\left ( \sqrt{x}-2 \right )}\\ D=\frac{x+6\sqrt{x}+9}{18x\sqrt{x}-36x}\]
A/ Đúng
B/ Sai
P=\(\left(\frac{\sqrt{x}+2}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{2-\sqrt{x}}-\frac{\sqrt{x}+2}{\sqrt{x}-3}\right)\):\(\left(2-\frac{\sqrt{x}}{\sqrt{x}+1}\right)\)
a,Rút gọn P
b.Tìm x để \(\frac{1}{P}\) ≤\(-\frac{5}{2}\)
\(\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}+\frac{2\sqrt{x}+1}{\sqrt{x}-3}+\frac{\sqrt{x}+3}{2-\sqrt{x}}\)
a. tìm x để M có nghĩa
b. rút gọn m
c. tìm x để M=5
d. tìm x thuộc Z để M thuộc Z
Cho biết: \(D=\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{2\sqrt{x}+1}{\sqrt{x}-3}\)
a, Rút gọn D.
b, Tính D khi x = \(\frac{1}{4}\).
c, Tìm x để D = 2.
d, Tìm x để D >3.
\(P=\sqrt{7=2\sqrt{6}}+\frac{6-2\sqrt{6}}{\sqrt{6}}+\sqrt{54}\)
\(Q=\left(\frac{x+2\sqrt{x}-1}{x\sqrt{x}-1}-\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}-2}{x+\sqrt{x}+1}\)(x>0 , khác 1 và 4 )
tìm x để biểu thức P+Q= \(\sqrt{6}\)
S=(\(\frac{x-2\sqrt{x}}{x-4}\) - 1) : ( \(\frac{4-x}{x-\sqrt{x-6}}\) - \(\frac{\sqrt{x}-2}{3-\sqrt{x}}\) - \(\frac{\sqrt{x}-3}{\sqrt{x}+2}\))
1.Rút gọn S
2. Tìm x để S=1
3.Tìm x thuộc Z để S<0
4.Tìm x để S thuộc Z
5.Tìm x để S>4
Câu 1 :A= \(\left(\frac{x}{x\sqrt{x}-4\sqrt{x}}-\frac{6}{3\sqrt{x}-6}+\frac{1}{\sqrt{x}+2}\right):\left(\sqrt{x}-2+\frac{10-x}{x+2}\right)\)
a, rút gọn A
b, Tìm X sao cho A<2
Câu 2 \(A=\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
a, rút gọn A \(\left(với\right)x\ge0,x\ne1\)
b, chúng minh rằng A\(\le\)\(\frac{2}{3}\)
Câu 3 \(\left(\frac{2}{\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x}+2}\right):\frac{2\sqrt{x}}{x+2\sqrt{x}}\left(vớix>0\right)\)
a, Rút gọn P
b, tìm giá trị của x để P=3
Bài 1 : Cho P = \(\frac{x\sqrt{x}+26\sqrt{x}-19}{x+2\sqrt{x}-3}-\frac{2\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}-3}{\sqrt{x}+3}\)
a. Rút gọn P
b. So sánh P và 1
c. Chứng minh P > \(\sqrt{P}\)
d. Tìm Min P
e. Tìm x nguyên để P nguyên
Bài 2 : Cho P = \(\left(\frac{1}{\sqrt{x}-1}-\frac{2}{x\sqrt{x}-x+\sqrt{x}+1}\right):\left(1-\frac{\sqrt{x}}{x+1}\right)\)
a. Tính P khi x = 6 - \(2\sqrt{5}\)
b. Chứng minh P > 0
c. Tìm x để P = 1
Bài 3 : Cho P = \(\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
a. Chứng tỏ P ≤ \(\frac{2}{3}\)
b. Tìm x để P > 0
1. Tính:
a) \(\sqrt{243}-\frac{1}{2}\sqrt{12}-2\sqrt{75}+\sqrt{27}\)
b) \(\frac{2\sqrt{3}-3\sqrt{2}}{\sqrt{3}-\sqrt{2}}+\frac{5}{1+\sqrt{6}}-6\sqrt{\frac{1}{6}}\)
2. Rút gọn: \(\frac{\sqrt{x}+1}{\sqrt{x}-2}+\frac{2\sqrt{x}}{\sqrt{x}+2}+\frac{2+5\sqrt{x}}{4-x}\)
B=\(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{3}{\sqrt{x}+1}-\frac{6\sqrt{x}-4}{x-1}\)
a,Rút gọn B
b,Tìm x để B=\(\frac{1}{2}\)
c,Tìm x để B<\(\frac{1}{2}\)