Phân tích đa thức sau thành nhân tử
a) (3x+1)2 -(x-1)2
b) 9 - 6x+ x2- y2
c) -(x-2)+3(x2-4)
Phân tích các đa thức sau thành nhân tử:
a) 4 x 2 +4xy + y 2 ; b) ( 2 x + 1 ) 2 - ( x - 1 ) 2 ;
c) 9 - 6x + x 2 - y 2 ; d) -(x + 2) + 3( x 2 -4).
a) Áp dụng HĐT 1 thu được ( 2 x + y ) 2 .
b) Áp dụng HĐT 3 với A = 2x + l; B = x - l thu được
[(2x +1) + (x -1)] [(2x +1) - (x -1)] rút gọn thành 3x(x + 2).
c) Ta có: 9 - 6x + x 2 - y 2 = ( 3 - x ) 2 - y 2 = (3 - x - y)(3 -x + y).
d) Ta có: -(x + 2) + 3( x 2 - 4) = -{x + 2) + 3(x + 2)(x - 2)
= (x + 2) [-1 + 3(x - 2)] = (x + 2)(3x - 7).
Phân tích đa thức thành nhân tử:
a) 4 x 2 - 12xy + 9 y 2 - 8x + 12y,
b)3 x 2 + 20x - 7;
c) ( 3 x - 1 ) 4 + 2(9 x 2 - 6x + 1) + 1;
d) 2 x 3 -3 x 2 +2x - 1.
Phân tích các đa thức sau thành nhân tử:
a) 4 x 2 - 4x + 1; b) 16 y 3 - 2 x 3 - 6x(x + 1) - 2;
c) 2 x 2 +7x + 5; d) x 2 - 6xy - 25 z 2 +9 y 2
Phân tích đa thức thành nhân tử:
a) 25 y 2 + 10 y 8 +1;
b) ( x - 1 ) 4 - 2 ( x 2 - 2 x + 1 ) 2 +1;
c) (x + 1)(x + 2)(x + 3)(x + 4) - 24;
d) ( x 2 + 4 x + 8 ) 2 + 3 x ( x 2 + 4x + 8) + 2 x 2 ;
e) x 4 + 6 x 3 +7 x 2 -6x + 1.
Phân tích các đa thức sau thành nhân tử:
a) 4 x 2 - 6x; b) x 3 y - 2 x 2 y 2 + 5xy;
c) 2 x 2 (x +1) + 4x(x +1); d) 2 5 x(y - 1) - 2 5 y(1 - y).
a) Kết quả 2x(2x – 3). b) Kết quả xy( x 2 – 2xy + 5).
c) Kết quả 2x(x + 1)(x + 4). d) Kết quả 2 5 ( y − 1 ) ( x + y ) .
Câu 1: Phân tích đa thức thành nhân tử
a. 6x² - 3xy
b. x2 -y2 - 6x + 9
c. x2 + 5x - 6
Câu 2 thực hiện phép tính
a. x + 2² - x - 3 (x + 1)
b. x³ - 2x² + 5x - 10 : ( x - 2)
Câu 3 Cho biểu thức A = (x - 5) / (x - 4) và B = (x + 5)/ 2x - (x - 6) / (5 - x) - (2x² - 2x - 50) / (2x² - 10x) (điều kiện x khác 0, x khác 4, x khác 5
a. Tính giá trị của A khi x² - 3x = 0
b. Rút gọn B
c. Tìm giá trị nguyên của x để A : B có giá trị nguyên
Câu 4: Cho tam giác ABC cân tại A đường cao AD, O là trung điểm của AC, điểm E đối xứng với điểm D qua cạnh OA.
a. Chứng minh tứ giác ADCE là hình chữ nhật
b. Gọi I là trung điểm của AD, chứng tỏ I là trung điểm của BE
c. cho AB = 10 cm BC = 12 cm. Tính diện tích tam giác OAB
cíu tớ với
Câu 4:
a: Sửa đề: E đối xứng D qua O
Xét tứ giác ADCE có
O là trung điểm chung của AC và DE
=>ADCE là hình bình hành
Hình bình hành ADCE có \(\hat{ADC}=90^0\)
nên ADCE là hình chữ nhật
b:
ADCE là hình chữ nhật
=>AE//CD và AE=CD
ΔABC cân tại A
mà AD là đường cao
nên D là trung điểm của BC
=>DB=DC
mà DC=AE
nên DB=AE
Vì AE//CD
nên AE//BD
Xét tứ giác AEDB có
AE//DB
AE=DB
Do đó: AEDB là hình bình hành
=>AD cắt BE tại trung điểm của mỗi đường
mà I là trung điểm của AD
nên I là trung điểm của BE
c: D là trung điểm của BC
=>\(DB=DC=\frac{BC}{2}=\frac{12}{2}=6\left(\operatorname{cm}\right)\)
ΔADB vuông tại D
=>\(AD^2+DB^2=AB^2\)
=>\(AD^2=10^2-6^2=64=8^2\)
=>AD=8(cm)
ΔABC có AD là đường cao
nên \(S_{ABC}=\frac12\cdot AD\cdot BC=\frac12\cdot8\cdot12=4\cdot12=48\left(\operatorname{cm}^2\right)\)
O là trung điểm của AC
=>\(S_{BOA}=\frac12\cdot S_{BAC}=\frac{48}{2}=24\left(\operatorname{cm}^2\right)\)
Câu 3:
a: ĐKXĐ của A là x<>4
\(x^2-3x=0\)
=>x(x-3)=0
=>\(\left[\begin{array}{l}x=0\\ x-3=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=0\\ x=3\end{array}\right.\)
Thay x=0 vào A, ta được:
\(A=\frac{0-5}{0-4}=\frac{-5}{-4}=\frac54\)
Thay x=3 vào A, ta được:
\(A=\frac{3-5}{3-4}=\frac{-2}{-1}=2\)
b: \(B=\frac{x+5}{2x}-\frac{x-6}{5-x}-\frac{2x^2-2x-50}{2x^2-10x}\)
\(=\frac{x+5}{2x}+\frac{x-6}{x-5}-\frac{2x^2-2x-50}{2x\left(x-5\right)}\)
\(=\frac{\left(x+5\right)\left(x-5\right)+2x\left(x-6\right)-2x^2+2x+50}{2x\left(x-5\right)}\)
\(=\frac{x^2-25+2x^2-12x-2x^2+2x+50}{2x\left(x-5\right)}=\frac{x^2-10x+25}{2x\left(x-5\right)}\)
\(=\frac{\left(x-5\right)^2}{2x\left(x-5\right)}=\frac{x-5}{2x}\)
c: Đặt P=A:B
\(=\frac{x-5}{x-4}:\frac{x-5}{2x}\)
\(=\frac{x-5}{x-4}\cdot\frac{2x}{x-5}=\frac{2x}{x-4}\)
Để P là số nguyên thì 2x⋮x-4
=>2x-8+8⋮x-4
=>8⋮x-4
=>x-4∈{1;-1;2;-2;4;-4;8;-8}
=>x∈{5;3;6;2;8;0;12;-4}
Kết hợp ĐKXĐ, ta được:x∈{3;6;2;8;12;-4}
Bài 1:
a: \(6x^2-3xy=3x\cdot2x-3x\cdot y=3x\left(2x-y\right)\)
b: \(x^2-y^2-6x+9\)
\(=x^2-6x+9-y^2\)
\(=\left(x-3\right)^2-y^2\)
=(x-3-y)(x-3+y)
c: \(x^2+5x-6\)
\(=x^2-x+6x-6\)
=x(x-1)+6(x-1)
=(x-1)(x+6)
Bài 2:
a: Sửa đề: \(\left(x+2\right)^2-\left(x-3\right)\left(x+1\right)\)
\(=x^2+4x+4-\left(x^2-2x-3\right)\)
\(=x^2+4x+4-x^2+2x+3\)
=6x+7
b: \(\left(x^3-2x^2+5x-10\right):\left(x-2\right)\)
\(=\frac{x^2\left(x-2\right)+5\left(x-2\right)}{x-2}\)
\(=x^2+5\)
phân tích các đa thức sau thành nhân tử:
a, A= x2 - 6x + 9 - 9y2
b, B= x3 - 3x2 + 3x - 1 + 2(x2 - 1)
a) \(A=x^2-6x+9-9y^2\)
\(=\left(x-3\right)^2-\left(3y\right)^2\)
\(=\left(x-3-3y\right)\left(x-3+3y\right)\)
b) \(B=x^3-3x^2+3x-1+2\left(x^2-1\right)\)
\(=\left(x-1\right)^3+\left(2x+2\right)\left(x-1\right)\)
\(=\left(x-1\right)\left[\left(x-1\right)^2+2x+2\right]\)
\(=\left(x-1\right).\left(x^2+3\right)\)
a, \(A=\left(x-3\right)^2-9y^2=\left(x-3-3y\right)\left(x-3+3y\right)\)
b, \(B=\left(x-1\right)^3+2\left(x-1\right)\left(x+1\right)=\left(x-1\right)\left[\left(x-1\right)^2+2\left(x+1\right)\right]\)
\(=\left(x-1\right)\left(x^2-2x+1+2x+2\right)=\left(x-1\right)\left(x^2+3\right)\)
phân tích các đa thức sau thành nhân tử:
a, A= x2 - 6x + 9 - 9y2
b, B= x3 - 3x2 + 3x - 1 + 2(x2 - 1)
Phân tích đa thức thành nhân tử:
a) x 2 -3x + 2; b) 4 x 2 - 36x + 56;
c) 2 x 2 + 5x + 2; d)2 x 2 -9x + 7;
e) 4 x 2 - 4x - 9 y 2 + 12y - 3; g) x 4 - 2 x 3 -4 x 2 + 4x-3;
h) x 3 -x +3 x 2 y + 3x y 2 + y 3 -y.
a) (x - 1)(x - 2). b) 4(x - 2)(x - 7).
c) (x + 2)(2x +1). d) (x - l)(2x - 7).
e) (2x + 3y - 3)(2x - 3y +1). g) (x - 3)( x 3 + x 2 - x +1).
h) (x + y)(x + y-l)(x + y + l).
Câu 1
Rút gọn các biểu thức sau:
a. 2x(3x + 2) - 3x(2x + 3)
b. (x + 2)3 + (x - 3)2 - x2(x + 5)
c. (3x3 - 4x2 + 6x) : 3x
Câu 2
Phân tích đa thức sau thành nhân tử: 2x3 - 12x2 + 18x
Câu 3
Tìm x, biết: 3x(x - 5) - x2 + 25 = 0
Câu 4 Cho hình bình hành ABCD (AB > AD). Gọi E và K lần lượt là trung điểm của CD và AB. BD cắt AE, AC, CK lần lượt tại N, O và I. Chứng minh rằng:
a. Tứ giắc AECK là hình bình hành.
b. Ba điểm E, O, K thẳng hàng.
c. DN = NI = IB
d. AE = 3KI
Câu 5 Cho x, y là hai số thực tùy ý, tìm giá trị nhỏ nhất của biểu thức sau:
P = x2 + 5y2 + 4xy + 6x + 16y + 32
Câu 1:
a) 2x(3x+2) - 3x(2x+3) = 6x^2+4x - 6x^2-9x = -5x
b) \(\left(x+2\right)^3+\left(x-3\right)^2-x^2\left(x+5\right)\)
\(=x^3+6x^2+12x+8+x^2-6x+9-x^3-5x^2\)
\(=2x^2+6x+17\)
c) \(\left(3x^3-4x^2+6x\right)\div\left(3x\right)=x^2-\dfrac{4}{3}x+2\)
Câu 2:
\(2x^3-12x^2+18x=2x\left(x^2-6x+9\right)=2x\left(x^2-2.x.3+3^2\right)=2x\left(x-3\right)^2\)