Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngô Chí Tài
Xem chi tiết
Ngô Chí Tài
21 tháng 10 2021 lúc 22:47

giúp tớ với

Khách vãng lai đã xóa
trường giang
17 tháng 12 2021 lúc 8:46

a)

A=1+4+42+...+459A=1+4+42+...+459

A=(1+4+42)+(43+44+45)+...+(457+458+459)A=(1+4+42)+(43+44+45)+...+(457+458+459)

A=(1+4+42)+43(1+4+42)+...+447(1+4+42)A=(1+4+42)+43(1+4+42)+...+447(1+4+42)

A=21+43.21+...+447.21A=21+43.21+...+447.21

A=21(1+43+...+447)A=21(1+43+...+447)

⇒A⋮21
các số như 43,447,459,458........ là 4 mũ và các số đằng sau là số mũ
câu b cũng làm như vậy nhưng dổi các số và kết quả

Khách vãng lai đã xóa
Nguyễn Ngọc Minh
Xem chi tiết
Thiên Sứ Tự Do
19 tháng 4 2016 lúc 18:48

4a=4+42+43+......+42013

4a-a=(4+42+43+......+42013)-(1+4+42+......+42012)

3a=42013-1

a=42013-1

       3       

quỳnh
Xem chi tiết
Ngô Tuấn Vũ
1 tháng 11 2015 lúc 10:27

c)D=4+42+43+44+...+42012

D=(4+42)+(43+44)+...+(42011+42012)

D=4.5+43.5+45.5+...+42011.5

D=5.(4+43+42011)

=>D chia hết cho 5

=>ĐPCM

Bùi Hồng Thắm
1 tháng 11 2015 lúc 10:24

tất cả đều có trong câu hỏi tương tự

Ngô Tuấn Vũ
1 tháng 11 2015 lúc 10:35

b)

A=(1+5+52)+(53+54+55)+...(5402+5403+5404)

A=31.1+31.53+...+31.5402

A=31.(1+53+...+5402)

=>A chia hết cho 31

=>Đâu phải con ma

 

phạm mạnh hùng
Xem chi tiết
Nguyễn Minh Đăng
25 tháng 10 2020 lúc 17:32

1) \(1+4+4^2+4^3+...+4^{2012}\)

\(=\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+...+\left(4^{2010}+4^{2011}+4^{2012}\right)\)

\(=21+21\cdot4^3+...+21\cdot4^{2010}\)

\(=21\cdot\left(1+4^3+...+4^{2010}\right)\) chia hết cho 21

2) \(1+7+7^2+7^3+...+7^{101}\)

\(=\left(1+7\right)+\left(7^2+7^3\right)+...+\left(7^{100}+7^{101}\right)\)

\(=8+8\cdot7^2+...8\cdot7^{100}\)

\(=8\cdot\left(1+7^2+...+7^{100}\right)\) chia hết cho 8

3) CM chia hết cho 5:

\(2+2^2+2^3+2^4+...+2^{100}\)

\(=\left(2+2^3\right)+\left(2^2+2^4\right)+...+\left(2^{98}+2^{100}\right)\)

\(=5\cdot2+5\cdot2^2+...+5\cdot2^{98}\)

\(=5\cdot\left(2+2^2+...+2^{98}\right)\) chia hết cho 5

CM chia hết cho 31:

\(2+2^2+2^3+...+2^{100}\)

\(=\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)

\(=2\cdot31+...+2^{96}\cdot31\)

\(=31\cdot\left(2+...+2^{96}\right)\) chia hết cho 31

Khách vãng lai đã xóa
Lí tự trọng
19 tháng 11 2023 lúc 19:43

Rrffhvyccbvfccvbbbhhgg

Junmiu Orina
Xem chi tiết
Chế Nguyễn Quỳnh Châu
28 tháng 10 2016 lúc 11:53

a, Ta co : M= ( 1 +4 + 4) + ( 43 + 44 + 45 ) +.......................+ ( 42010 + 42011 +42012 )

              M = 1. (1+4+16 ) +43. (1+4+16 ) +.........................+ 42010. ( 1+4 +16 

              M = 1, 21 + 43. 21 +..............................................+ 42010 .21

              M= 21.(1+43+.................................... + 42010 ) CHIA HẾT 21

​TƯƠNG TƯ

fidlend
Xem chi tiết

Giải:

a) \(M=21^9+21^8+21^7+...+21+1\) 

Do \(21^n\) luôn có tận cùng là 1

\(\Rightarrow M=21^9+21^8+21^7+...+21+1\) 

Tân cùng của M là:

     \(1+1+1+1+1+1+1+1+1+1=10\) tận cùng là 0

\(\Rightarrow M⋮10\) 

\(\Leftrightarrow M⋮2;5\) 

b) \(N=6+6^2+6^3+...+6^{2020}\) 

\(N=6.\left(1+6\right)+6^3.\left(1+6\right)+...+6^{2019}.\left(1+6\right)\) 

\(N=6.7+6^3.7+...+6^{2019}.7\) 

\(N=7.\left(6+6^3+...+6^{2019}\right)⋮7\) 

\(\Rightarrow N⋮7\) 

Ta thấy: \(N=6+6^2+6^3+...+6^{2020}⋮6\) 

Mà \(6⋮̸9\) 

\(\Rightarrow N⋮̸9\) 

c) \(P=4+4^2+4^3+...+4^{23}+4^{24}\) 

\(P=1.\left(4+4^2\right)+4^2.\left(4+4^2\right)+...+4^{20}.\left(4+4^2\right)+4^{22}.\left(4+4^2\right)\) 

\(P=1.20+4^2.20+...+4^{20}.20+4^{22}.20\) 

\(P=20.\left(1+4^2+...+4^{20}+4^{22}\right)⋮20\) 

\(\Rightarrow P⋮20\) 

\(P=4+4^2+4^3+...+4^{23}+4^{24}\) 

\(P=4.\left(1+4+4^2\right)+...+4^{22}.\left(1+4+4^2\right)\) 

\(P=4.21+...+4^{22}.21\) 

\(P=21.\left(4+...+4^{22}\right)⋮21\) 

\(\Rightarrow P⋮21\) 

d) \(Q=6+6^2+6^3+...+6^{99}\) 

\(Q=6.\left(1+6+6^2\right)+...+6^{97}.\left(1+6+6^2\right)\) 

\(Q=6.43+...+6^{97}.43\) 

\(Q=43.\left(6+...+6^{97}\right)⋮43\) 

\(\Rightarrow Q⋮43\) 

Chúc bạn học tốt!

Linh Phan
Xem chi tiết
Nguyệt
20 tháng 10 2018 lúc 14:46

\(M=\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+...+\left(4^{2010}+4^{2011}+4^{2012}\right)\)

\(M=21+4^3.\left(1+4+4^2\right)+...+4^{2010}.\left(1+4+4^2\right)\)

\(M=21+4^3.21+...+4^{2010}.21\)

\(M=21.\left(1+4^3+....+4^{2010}\right)⋮21\)

BÙI TRUNG KIÊN
20 tháng 10 2018 lúc 14:53

a) (1+4+42) + (43+45+46) +.....+ (42010+42011+42012)

= 21             + 43.(1+4+42) +.....+ 42010.(1+ 4 + 42)

= 21             + 43. 21           +....+ 42010. 21

= 21. (1+ 43 +......+ 42010 )

=> tổng chia hết cho 21

Tẫn
20 tháng 10 2018 lúc 18:05

\(1+4+4^2+4^3+....+4^{2012}\)

\(=\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+....+\left(4^{2010}+4^{2011}+4^{2012}\right)\)

\(=16+4^3\left(1+4+4^2\right)+....+4^{2010}\left(1+4+4^2\right)\)

\(=21+4^3\cdot21+....+4^{2010}\cdot21\)

\(=21\left(1+4^3+...+4^{2010}\right)\)

\(\Rightarrowđpcm\)

Nguyễn Văn Chí Phong
Xem chi tiết
Ahwi
21 tháng 9 2019 lúc 20:53

\(1+4+4^2+4^3+4^4+.....+4^{2012}.\)

\(=\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+\left(4^6+4^7+4^8\right)+.....+\left(4^{2010}+4^{2011}+4^{2012}\right)\)

\(=21+4^3\cdot\left(1+4+4^2\right)+4^6\cdot\left(1+4+4^2\right)+.....+4^{2010}\cdot\left(1+4+4^2\right)\)

\(=21+4^3\cdot21+4^6\cdot21+.....+4^{2010}\cdot21\)

\(=21\left(1+4^3+4^6+...+4^{2010}\right)\)

Có \(21\left(1+4^3+4^6+...+4^{2010}\right)⋮4\)

\(\Rightarrow1+4+4^2+4^3+4^4+.....+4^{2012}⋮4\)\(\left(đpcm\right)\)

Vì tổng các số này chia hết cho 21 nên chúng chia hết cho 21

[ Hải Vân ]
6 tháng 10 2019 lúc 13:57

1+4+42+43+.........+42012

=(1+4+42)+43.(1+4+42)+............+42010.(1+4+42)

=21+43.21+............+42010.21

=21.(1+43+.......+42010)

Vì 21 chia hết cho 21

=> 21.(1+43+.....+42010) chia hết cho 21

Vậy 1+4+42+43+......+42012 chia hết cho 21

Chúc bn hok tốt nhé

#han sara#

Vũ Quỳnh Hương
Xem chi tiết
Summer
12 tháng 8 2017 lúc 8:53

a) 4.(1+4)+43.(1+4)+................+459(1+4)

=5.4+5.43+...+5.459

=5.(4+43+.+459) chia hết cho 5

4.(1+4+42)+44.(1+4+42)+...............+458(1+4+42)

=21.4+44.21+..+21.458

=21.(4+44+.+458) chia hết cho 21

b) 5.(1+5)+53(1+5)+.+59(1+5)

=6.(5+53+.............+59) chia hết cho 6

Phạm Phương Ngọc
23 tháng 7 2018 lúc 11:28

a) Đặt biểu thức trên là A, ta có:

A = 4 + 42 + 43 + 44 + ... + 460

=> A = (4 + 42) + (43 + 44) + ... + (459 + 460)

=> A = 4(1 + 4) + 43(1 + 4) + ... + 459(1 + 4)

=> A = 4 . 5 + 43 . 5 + ... + 459 . 5

=> A = 5(4 + 43 + ... + 459)

=> A ⋮ 5

A = 4 + 42 + 43 + 44 + ... + 460

=> A = (4 + 42 + 43) + (44 + 45 + 46) + ... + (458 + 459 + 460)

=> A = 4(1 + 4 + 42) + 44(1 + 4 + 42) + ... + 458(1 + 4 + 42)

=> A = 4 . 21 + 44 . 21 + ... + 458 . 21

=> A = 21(4 + 44 + ... + 458)

=> A ⋮ 21

b) Đặt biểu thức trên là B, ta có:

B = 5 + 52 + 53 + 54 + ... + 510

=> B = (5 + 52) + (53 + 54) + ... + (59 + 510)

=> B = 5(1 + 5) + 53(1 + 5) + ... + 59(1 + 5)

=> B = 5 . 6 + 53 . 6 + ... + 59 . 6

=> B = 6(5 + 53 + ... + 59)

=> B ⋮ 6