2a+13b/3a-7b=2c+13d/3c-7d chứng minh rằng a/b=c/d
Cho 2a+13b/3a-7b=2c+13d/3c-7d. Chứng minh răngd a/b=c/d
Cho tỉ lệ thuận: 2a trừ 13b phần 3a trừ 7b bằng 2c + 13d phần 3c trừ 7d. CM rằng a phần b bằng c phần d và ngược lại: cho a phần b bằng c phần d suy ra 2a trừ 13b phần 3a + 7b bằng 2c+ 13b phần 3c trừ 7d
Cho a/b = c/d. CMR : 2a+13b/3a-7b = 2c+13d/ 3c-7d
Cho a/b = c/d. CMR : 2a+13b/3a-7b = 2c+13d/ 3c-7d
Cho a/b = c/d. CMR : 2a+13b/3a-7b = 2c+13d/ 3c-7d
Cho a/b = c/d. CMR : 2a+13b/3a-7b = 2c+13d/ 3c-7d
(2a+13b)/(3a-7b)=(2c+13d)/(3c-7d) cm a/b=c/d
\(\frac{2a+13b}{3a-7b}=\frac{2c+13d}{3c-7d}\)
\(\Rightarrow\frac{2a+13b}{2c+13d}=\frac{3a-7b}{3c-7d}=\frac{3\left(2a+13b\right)}{3\left(2c+13d\right)}=\frac{2\left(3a-7b\right)}{2\left(3c-7d\right)}\)
\(=\frac{3\left(2a+13b\right)-2\left(3a-7b\right)}{3\left(2c+13d\right)-2\left(3c-7d\right)}=\frac{53b}{53d}=\frac{b}{d}\)(1)
\(\Rightarrow\frac{2a+13b}{2c+13d}=\frac{3a-7b}{3c-7d}=\frac{7\left(2a+13b\right)}{7\left(2a+13d\right)}=\frac{13\left(3a-7b\right)}{13\left(3c-7d\right)}\)
\(=\frac{7\left(2a+13b\right)+13\left(3a-7b\right)}{7\left(2c+13d\right)+13\left(3c-7d\right)}=\frac{53a}{53c}=\frac{a}{c}\)(2)
Từ (1) (2) => \(\frac{b}{d}=\frac{a}{c}\Rightarrow\frac{c}{d}=\frac{a}{b}\)
\(\frac{2a+13b}{3a-7b}=\frac{2c+13d}{3c-7d}\Leftrightarrow\left(2a+13b\right).\left(3c-7d\right)=\left(2c+13d\right).\left(3a-7b\right)\)
\(\Rightarrow6ac-14ad+39bc-91bd=6ac-14cb+39ad-91bd\)
\(\Rightarrow-14ad+39bc=-14cb+39ad\)
\(\Rightarrow-53ad=-53bc\Rightarrow ad=bc\Rightarrow\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)
Ta có \(\frac{2a+13b}{3a-7b}=\frac{2c+13d}{3c-7d}\)
=> (2a+13b).(3c-7d)=(3a-7b).(2c+13d)
(=) 6ac-14ad+39bc-91bd=6ac+39ad-14bc-91bd
(=) -14ad+39bc=39ad-14bc
(=) -14ad-39ad=-39bc-14bc
(=) -53ad=-53bc
(=) ad=bc
=> \(\frac{a}{b}=\frac{c}{d}\)
Cho tỉ lệ thức \(\frac{2a+13b}{3a-7b}=\frac{2c+13d}{3c-7d}\)
Chứng minh rằng : \(\frac{a}{b}=\frac{c}{d}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)
Suy ra : \(\frac{2a+13b}{3a-7b}=\frac{2bk+13b}{3bk-7b}=\frac{b.\left(2k+13\right)}{b.\left(3k-7\right)}=\frac{2k+13}{3k-7}\)
\(\frac{2c+13d}{3c-7d}=\frac{2dk+13d}{3dk-7d}=\frac{d\left(2k+13\right)}{d\left(3k-7\right)}=\frac{2k+13}{3k-7}\)
Vậy \(\frac{2a+13b}{3a-7b}=\frac{2c+13d}{3c-7d}\) Khi : \(\frac{a}{b}=\frac{c}{d}\)
ta có : \(\frac{2a+13b}{3a-7b}=\frac{2c+13d}{3c-7d}\)
<=> (2a+13b)(3c-7d)=(2c+13d)(7a-7b)
<=>6ac-14ad+39bc-91bd=6c-14bc+39ab-91bd
<=>39bc-14ab=39ab-14bc
<=> bc=ab
<=>\(\frac{a}{b}=\frac{c}{d}\)
Cho tỉ lệ thức (2a+13b)/(3a-7b)=(2c+13d)/(3c-7d). Cmr: a/b=c/d.
Ta có thể chứng minh :
Ta có:
2a+13/b3a−7b=2c+13d/3c−7d
=> 2a+13b/2c+13d=3a−7b/3c−7d
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
2a+13b/2c+13d=3a−7b/3c−7d=2a+13b+3a−7b/2c+13d+3c−7d=5a+6b5c+6d
Từ 5a+6b/5c+6d = > 5a/5c=6b/6d
<=> a/c=b/d
Hay: a/b=c/d (đpcm)